Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,9 @@ from torchvision import models, transforms
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from PIL import Image
|
8 |
import requests
|
|
|
9 |
import base64
|
10 |
from io import BytesIO
|
11 |
-
import os
|
12 |
|
13 |
# Define the number of classes
|
14 |
num_classes = 2
|
@@ -46,46 +46,22 @@ transform = transforms.Compose([
|
|
46 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
47 |
])
|
48 |
|
49 |
-
def predict(
|
50 |
try:
|
51 |
-
|
52 |
-
if not isinstance(data, list) or len(data) == 0:
|
53 |
-
return json.dumps({"error": "Input data should be a non-empty list."})
|
54 |
-
|
55 |
-
# Extract the image path
|
56 |
-
image_input = data[0].get('path', None)
|
57 |
-
if not image_input:
|
58 |
-
return json.dumps({"error": "No image path provided."})
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
if isinstance(image_input, str) and (image_input.startswith("http://") or image_input.startswith("https://")):
|
64 |
-
try:
|
65 |
-
response = requests.get(image_input)
|
66 |
-
response.raise_for_status() # Check for HTTP errors
|
67 |
-
image = Image.open(BytesIO(response.content))
|
68 |
-
print(f"Fetched image from URL: {image}")
|
69 |
-
except Exception as e:
|
70 |
-
print(f"Error fetching image from URL: {e}")
|
71 |
-
return json.dumps({"error": f"Error fetching image from URL: {e}"})
|
72 |
-
|
73 |
-
# Check if the image path is a valid local path
|
74 |
-
elif isinstance(image_input, str) and os.path.exists(image_input):
|
75 |
-
try:
|
76 |
-
image = Image.open(image_input)
|
77 |
-
print(f"Loaded image from local path: {image}")
|
78 |
-
except Exception as e:
|
79 |
-
return json.dumps({"error": f"Error loading image from local path: {e}"})
|
80 |
-
|
81 |
-
else:
|
82 |
-
return json.dumps({"error": "Invalid image path. Ensure it's a valid URL or local path."})
|
83 |
|
84 |
-
# Apply
|
85 |
image = transform(image).unsqueeze(0)
|
86 |
print(f"Transformed image tensor: {image.shape}")
|
|
|
|
|
87 |
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
88 |
|
|
|
89 |
with torch.no_grad():
|
90 |
outputs = model(image)
|
91 |
predicted_class = torch.argmax(outputs, dim=1).item()
|
@@ -98,7 +74,7 @@ def predict(data):
|
|
98 |
return json.dumps({"result": "The photo you've sent is of a healthy maize image."})
|
99 |
else:
|
100 |
return json.dumps({"error": "Unexpected class prediction."})
|
101 |
-
|
102 |
except Exception as e:
|
103 |
print(f"Error processing image: {e}")
|
104 |
return json.dumps({"error": f"Error processing image: {e}"})
|
@@ -106,7 +82,7 @@ def predict(data):
|
|
106 |
# Create the Gradio interface
|
107 |
iface = gr.Interface(
|
108 |
fn=predict,
|
109 |
-
inputs=gr.
|
110 |
outputs=gr.Textbox(label="Prediction Result"),
|
111 |
live=True,
|
112 |
title="Maize Anomaly Detection",
|
@@ -115,4 +91,3 @@ iface = gr.Interface(
|
|
115 |
|
116 |
# Launch the Gradio interface
|
117 |
iface.launch(share=True, show_error=True)
|
118 |
-
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from PIL import Image
|
8 |
import requests
|
9 |
+
import os
|
10 |
import base64
|
11 |
from io import BytesIO
|
|
|
12 |
|
13 |
# Define the number of classes
|
14 |
num_classes = 2
|
|
|
46 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
47 |
])
|
48 |
|
49 |
+
def predict(image):
|
50 |
try:
|
51 |
+
print(f"Received image input: {image}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Check if the input is a PIL Image type (Gradio already provides a PIL image)
|
54 |
+
if not isinstance(image, Image.Image):
|
55 |
+
return json.dumps({"error": "Invalid image format received. Please provide a valid image."})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Apply transformations to the image
|
58 |
image = transform(image).unsqueeze(0)
|
59 |
print(f"Transformed image tensor: {image.shape}")
|
60 |
+
|
61 |
+
# Move the image to the correct device
|
62 |
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
63 |
|
64 |
+
# Make predictions
|
65 |
with torch.no_grad():
|
66 |
outputs = model(image)
|
67 |
predicted_class = torch.argmax(outputs, dim=1).item()
|
|
|
74 |
return json.dumps({"result": "The photo you've sent is of a healthy maize image."})
|
75 |
else:
|
76 |
return json.dumps({"error": "Unexpected class prediction."})
|
77 |
+
|
78 |
except Exception as e:
|
79 |
print(f"Error processing image: {e}")
|
80 |
return json.dumps({"error": f"Error processing image: {e}"})
|
|
|
82 |
# Create the Gradio interface
|
83 |
iface = gr.Interface(
|
84 |
fn=predict,
|
85 |
+
inputs=gr.Image(type="pil", label="Upload an image or provide a URL or local path"),
|
86 |
outputs=gr.Textbox(label="Prediction Result"),
|
87 |
live=True,
|
88 |
title="Maize Anomaly Detection",
|
|
|
91 |
|
92 |
# Launch the Gradio interface
|
93 |
iface.launch(share=True, show_error=True)
|
|