Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -46,38 +46,47 @@ transform = transforms.Compose([
|
|
46 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
47 |
])
|
48 |
|
49 |
-
def predict(
|
50 |
try:
|
51 |
-
|
52 |
-
return {"error": "Input data should be a non-empty list."}
|
53 |
-
|
54 |
-
image_input = data[0].get('image', None)
|
55 |
-
if not image_input:
|
56 |
-
return {"error": "No image provided."}
|
57 |
-
|
58 |
-
print(f"Received image input: {image_input}")
|
59 |
|
60 |
# Check if the input is a PIL Image type
|
61 |
-
if isinstance(
|
62 |
-
print(f"Image is already loaded as PIL Image: {
|
63 |
else:
|
64 |
-
#
|
65 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
try:
|
67 |
-
response = requests.get(
|
68 |
image = Image.open(BytesIO(response.content))
|
69 |
print(f"Fetched image from URL: {image}")
|
70 |
except Exception as e:
|
71 |
print(f"Error fetching image from URL: {e}")
|
72 |
-
return {"error": f"Error fetching image from URL: {e}"}
|
73 |
-
|
|
|
|
|
74 |
try:
|
75 |
-
|
76 |
-
image
|
77 |
-
print(f"Decoded base64 image: {image}")
|
78 |
except Exception as e:
|
79 |
-
print(f"Error
|
80 |
-
return {"error": f"Error
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# Apply transformations
|
83 |
image = transform(image).unsqueeze(0)
|
@@ -91,20 +100,20 @@ def predict(data):
|
|
91 |
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")
|
92 |
|
93 |
if predicted_class == 0:
|
94 |
-
return {"result": "The photo you've sent is of fall army worm with problem ID 126."}
|
95 |
elif predicted_class == 1:
|
96 |
-
return {"result": "The photo you've sent is of a healthy maize image."}
|
97 |
else:
|
98 |
-
return {"error": "Unexpected class prediction."}
|
99 |
except Exception as e:
|
100 |
print(f"Error processing image: {e}")
|
101 |
-
return {"error": f"Error processing image: {e}"}
|
102 |
|
103 |
# Create the Gradio interface
|
104 |
iface = gr.Interface(
|
105 |
fn=predict,
|
106 |
-
inputs=gr.
|
107 |
-
outputs=gr.
|
108 |
live=True,
|
109 |
title="Maize Anomaly Detection",
|
110 |
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
|
@@ -112,4 +121,3 @@ iface = gr.Interface(
|
|
112 |
|
113 |
# Launch the Gradio interface
|
114 |
iface.launch(share=True, show_error=True)
|
115 |
-
|
|
|
46 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
47 |
])
|
48 |
|
49 |
+
def predict(image):
|
50 |
try:
|
51 |
+
print(f"Received image input: {image}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Check if the input is a PIL Image type
|
54 |
+
if isinstance(image, Image.Image):
|
55 |
+
print(f"Image is already loaded as PIL Image: {image}")
|
56 |
else:
|
57 |
+
# Try to handle base64-encoded image
|
58 |
+
if isinstance(image, dict) and image.get("data"):
|
59 |
+
try:
|
60 |
+
image_data = base64.b64decode(image["data"])
|
61 |
+
image = Image.open(BytesIO(image_data))
|
62 |
+
print(f"Decoded base64 image: {image}")
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error decoding base64 image: {e}")
|
65 |
+
return json.dumps({"error": f"Error decoding base64 image: {e}"})
|
66 |
+
|
67 |
+
# Try to fetch the image from a URL
|
68 |
+
elif isinstance(image, str) and image.startswith("http"):
|
69 |
try:
|
70 |
+
response = requests.get(image)
|
71 |
image = Image.open(BytesIO(response.content))
|
72 |
print(f"Fetched image from URL: {image}")
|
73 |
except Exception as e:
|
74 |
print(f"Error fetching image from URL: {e}")
|
75 |
+
return json.dumps({"error": f"Error fetching image from URL: {e}"})
|
76 |
+
|
77 |
+
# Try to load the image from a local file path
|
78 |
+
elif isinstance(image, str) and os.path.isfile(image):
|
79 |
try:
|
80 |
+
image = Image.open(image)
|
81 |
+
print(f"Loaded image from local path: {image}")
|
|
|
82 |
except Exception as e:
|
83 |
+
print(f"Error loading image from local path: {e}")
|
84 |
+
return json.dumps({"error": f"Error loading image from local path: {e}"})
|
85 |
+
|
86 |
+
# Validate that the image is correctly loaded
|
87 |
+
if not isinstance(image, Image.Image):
|
88 |
+
print("Invalid image format received.")
|
89 |
+
return json.dumps({"error": "Invalid image format received."})
|
90 |
|
91 |
# Apply transformations
|
92 |
image = transform(image).unsqueeze(0)
|
|
|
100 |
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")
|
101 |
|
102 |
if predicted_class == 0:
|
103 |
+
return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."})
|
104 |
elif predicted_class == 1:
|
105 |
+
return json.dumps({"result": "The photo you've sent is of a healthy maize image."})
|
106 |
else:
|
107 |
+
return json.dumps({"error": "Unexpected class prediction."})
|
108 |
except Exception as e:
|
109 |
print(f"Error processing image: {e}")
|
110 |
+
return json.dumps({"error": f"Error processing image: {e}"})
|
111 |
|
112 |
# Create the Gradio interface
|
113 |
iface = gr.Interface(
|
114 |
fn=predict,
|
115 |
+
inputs=gr.Image(type="pil", label="Upload an image or provide a URL or local path"),
|
116 |
+
outputs=gr.Textbox(label="Prediction Result"),
|
117 |
live=True,
|
118 |
title="Maize Anomaly Detection",
|
119 |
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
|
|
|
121 |
|
122 |
# Launch the Gradio interface
|
123 |
iface.launch(share=True, show_error=True)
|
|