Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -36,43 +36,28 @@ transform = transforms.Compose([
|
|
| 36 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # Normalize the image (ImageNet mean and std)
|
| 37 |
])
|
| 38 |
|
| 39 |
-
# Function to convert image from URL to PIL image
|
| 40 |
-
def url_to_image(image_url):
|
| 41 |
-
response = requests.get(image_url)
|
| 42 |
-
img = Image.open(BytesIO(response.content))
|
| 43 |
-
return img
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
#
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
if isinstance(image_input, str):
|
| 54 |
-
if image_input.startswith("http"): # If URL
|
| 55 |
-
image = url_to_image(image_input)
|
| 56 |
-
elif image_input.startswith("data:image"): # If base64 string
|
| 57 |
-
image = base64_to_pil(image_input)
|
| 58 |
-
else: # Local image path
|
| 59 |
-
image = Image.open(image_input)
|
| 60 |
-
else:
|
| 61 |
-
image = image_input # If the input is already a PIL image
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
image = transform(image).unsqueeze(0) # Add batch dimension
|
| 65 |
-
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Move to GPU if available
|
| 66 |
-
|
| 67 |
with torch.no_grad():
|
| 68 |
-
outputs = model(image)
|
| 69 |
-
predicted_class = torch.argmax(outputs, dim=1).item()
|
| 70 |
|
| 71 |
# Create a response based on the predicted class
|
| 72 |
if predicted_class == 0:
|
| 73 |
return "The photo you've sent is of fall army worm with problem ID 126."
|
| 74 |
elif predicted_class == 1:
|
| 75 |
-
return "The photo you've sent is of a healthy
|
| 76 |
else:
|
| 77 |
return "Unexpected class prediction."
|
| 78 |
|
|
|
|
| 36 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # Normalize the image (ImageNet mean and std)
|
| 37 |
])
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
def predict(image):
|
| 41 |
+
# Check if the input contains a base64-encoded string
|
| 42 |
+
if isinstance(image, dict) and image.get("data"):
|
| 43 |
+
# Decode the base64 string into a PIL image
|
| 44 |
+
image_data = base64.b64decode(image["data"])
|
| 45 |
+
image = Image.open(BytesIO(image_data))
|
| 46 |
|
| 47 |
+
# Apply your existing transformations
|
| 48 |
+
image = transform(image).unsqueeze(0) # Transform and add batch dimension
|
| 49 |
+
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# Perform inference
|
|
|
|
|
|
|
|
|
|
| 52 |
with torch.no_grad():
|
| 53 |
+
outputs = model(image)
|
| 54 |
+
predicted_class = torch.argmax(outputs, dim=1).item()
|
| 55 |
|
| 56 |
# Create a response based on the predicted class
|
| 57 |
if predicted_class == 0:
|
| 58 |
return "The photo you've sent is of fall army worm with problem ID 126."
|
| 59 |
elif predicted_class == 1:
|
| 60 |
+
return "The photo you've sent is of a healthy maize image."
|
| 61 |
else:
|
| 62 |
return "Unexpected class prediction."
|
| 63 |
|