import gradio as gr import json import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import requests from io import BytesIO # Define the number of classes num_classes = 2 # Download model from Hugging Face def download_model(): try: model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path except Exception as e: print(f"Error downloading model: {e}") return None # Load the model from Hugging Face def load_model(model_path): try: model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model except Exception as e: print(f"Error loading model: {e}") return None # Download the model and load it model_path = download_model() model = load_model(model_path) if model_path else None # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def predict(input_data): try: print(f"Input data received: {input_data}, Type: {type(input_data)}") # Check if the input is a URL or image if isinstance(input_data, str): # If it's a string, assume it's a URL try: response = requests.get(input_data) response.raise_for_status() # Raise error for HTTP issues img = Image.open(BytesIO(response.content)) print("Image fetched successfully from URL.") except Exception as e: print(f"Error fetching image from URL: {e}") return json.dumps({"error": f"Failed to fetch image from URL: {e}"}) else: # If it's not a string, assume it's an image file img = input_data # Validate the image if not isinstance(img, Image.Image): print("Invalid image format received.") return json.dumps({"error": "Invalid image format received. Please provide a valid image."}) else: print(f"Image successfully loaded: {img}") # Apply transformations to the image img = transform(img).unsqueeze(0) print(f"Transformed image tensor shape: {img.shape}") # Ensure model is loaded if model is None: return json.dumps({"error": "Model not loaded. Ensure the model file is available and correctly loaded."}) # Move the image to the correct device img = img.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Make predictions with torch.no_grad(): outputs = model(img) predicted_class = torch.argmax(outputs, dim=1).item() print(f"Model prediction outputs: {outputs}, Predicted class: {predicted_class}") # Return the result based on the predicted class if predicted_class == 0: return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."}) elif predicted_class == 1: return json.dumps({"result": "The photo you've sent is of a healthy maize image."}) else: return json.dumps({"error": "Unexpected class prediction."}) except Exception as e: print(f"Error processing image: {e}") return json.dumps({"error": f"Error processing image: {e}"}) # Create the Gradio interface with both local file upload and URL input iface = gr.Interface( fn=predict, inputs=[gr.Image(type="pil", label="Upload an image or provide a local path"), gr.Textbox(label="Or enter image URL (if available)", placeholder="Enter a URL for the image")], outputs=gr.Textbox(label="Prediction Result"), live=True, title="Maize Anomaly Detection", description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images." ) # Launch the Gradio interface iface.launch(share=True, show_error=True)