import gradio as gr import json import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import requests import os from io import BytesIO # Define the number of classes num_classes = 2 # Download model from Hugging Face def download_model(): model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path # Load the model from Hugging Face def load_model(model_path): model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model # Download the model and load it model_path = download_model() model = load_model(model_path) # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Function to predict from image content def predict_from_image(image): # Ensure the image is a PIL Image if not isinstance(image, Image.Image): raise ValueError("Invalid image format received. Please provide a valid image.") # Apply transformations image_tensor = transform(image).unsqueeze(0) # Predict with torch.no_grad(): outputs = model(image_tensor) predicted_class = torch.argmax(outputs, dim=1).item() # Interpret the result if predicted_class == 0: return {"result": "The photo is of fall army worm with problem ID 126."} elif predicted_class == 1: return {"result": "The photo is of a healthy maize image."} else: return {"error": "Unexpected class prediction."} # Function to handle image from URL or file path def predict_from_url_or_path(url=None, path=None): try: # If URL is provided, fetch and process image if url: response = requests.get(url) response.raise_for_status() # Ensure the request was successful image = Image.open(BytesIO(response.content)) return predict_from_image(image) # If path is provided, open the image from the local path elif path: if not os.path.exists(path): return {"error": f"File not found at {path}"} image = Image.open(path) return predict_from_image(image) else: return {"error": "No valid input provided."} except Exception as e: return {"error": f"Failed to process the input: {str(e)}"} # Gradio interface iface = gr.Interface( fn=lambda url, path: predict_from_url_or_path(url=url, path=path), inputs=[ gr.Textbox(label="Enter Image URL", placeholder="Provide a valid image URL (optional)", optional=True), gr.Textbox(label="Or Enter Local Image Path", placeholder="Provide the local image path (optional)", optional=True), ], outputs=gr.JSON(label="Prediction Result"), live=True, title="Maize Anomaly Detection", description="Provide either an image URL or a local file path to detect anomalies in maize crops.", ) # Launch the interface iface.launch(share=True, show_error=True)