import gradio as gr import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import requests import base64 from io import BytesIO import os # Define the number of classes num_classes = 2 # Update with the actual number of classes in your dataset # Download model from Hugging Face def download_model(): try: model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path except Exception as e: print(f"Error downloading model: {e}") return None # Load the model from Hugging Face def load_model(model_path): try: model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model except Exception as e: print(f"Error loading model: {e}") return None # Download the model and load it model_path = download_model() model = load_model(model_path) if model_path else None # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def predict(image): try: print(f"Received image input: {image}") # Check if the input contains a base64-encoded string if isinstance(image, dict) and image.get("data"): try: image_data = base64.b64decode(image["data"]) image = Image.open(BytesIO(image_data)) print(f"Decoded base64 image: {image}") except Exception as e: print(f"Error decoding base64 image: {e}") return f"Error decoding base64 image: {e}" # Check if the input is a URL elif isinstance(image, str) and image.startswith("http"): try: response = requests.get(image) image = Image.open(BytesIO(response.content)) print(f"Fetched image from URL: {image}") except Exception as e: print(f"Error fetching image from URL: {e}") return f"Error fetching image from URL: {e}" # Check if the input is a local file path elif isinstance(image, str) and os.path.isfile(image): try: image = Image.open(image) print(f"Loaded image from local path: {image}") except Exception as e: print(f"Error loading image from local path: {e}") return f"Error loading image from local path: {e}" # Validate that the image is correctly loaded if not isinstance(image, Image.Image): print("Invalid image format received.") return "Invalid image format received." # Apply transformations image = transform(image).unsqueeze(0) print(f"Transformed image tensor: {image.shape}") image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) with torch.no_grad(): outputs = model(image) predicted_class = torch.argmax(outputs, dim=1).item() print(f"Prediction output: {outputs}, Predicted class: {predicted_class}") if predicted_class == 0: return "The photo you've sent is of fall army worm with problem ID 126." elif predicted_class == 1: return "The photo you've sent is of a healthy maize image." else: return "Unexpected class prediction." except Exception as e: print(f"Error processing image: {e}") return f"Error processing image: {e}" # Create the Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil", label="Upload an image or provide a URL or local path"), # Input: Image, URL, or Local Path outputs=gr.Textbox(label="Prediction Result"), # Output: Predicted class live=True, title="Maize Anomaly Detection", description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images." ) # Launch the Gradio interface iface.launch(share=True, show_error=True)