import gradio as gr import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import requests import base64 from io import BytesIO # Define the number of classes num_classes = 2 # Update with the actual number of classes in your dataset (e.g., 2 for healthy and anomalous) # Download model from Hugging Face def download_model(): model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path # Load the model from Hugging Face def load_model(model_path): model = models.resnet50(pretrained=False) # Set pretrained=False because you're loading custom weights model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust for the number of classes in your dataset model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) # Load model on CPU for compatibility model.eval() # Set to evaluation mode return model # Download the model and load it model_path = download_model() # Downloads the model from Hugging Face Hub model = load_model(model_path) # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), # Resize the image to 256x256 transforms.CenterCrop(224), # Crop the image to 224x224 transforms.ToTensor(), # Convert the image to a Tensor transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # Normalize the image (ImageNet mean and std) ]) def predict(image): # Check if the input contains a base64-encoded string if isinstance(image, dict) and image.get("data"): # Decode the base64 string into a PIL image image_data = base64.b64decode(image["data"]) image = Image.open(BytesIO(image_data)) # Apply your existing transformations image = transform(image).unsqueeze(0) # Transform and add batch dimension image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Perform inference with torch.no_grad(): outputs = model(image) predicted_class = torch.argmax(outputs, dim=1).item() # Create a response based on the predicted class if predicted_class == 0: return "The photo you've sent is of fall army worm with problem ID 126." elif predicted_class == 1: return "The photo you've sent is of a healthy maize image." else: return "Unexpected class prediction." # Create the Gradio interface iface = gr.Interface( fn=predict, # Function for prediction inputs=gr.Image(type="pil"), # Image input outputs=gr.Textbox(), # Output: Predicted class live=True, # Updates as the user uploads an image title="Maize Anomaly Detection", description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images." ) # Launch the Gradio interface iface.launch(share=True)