import gradio as gr import json import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import requests import os from io import BytesIO import logging # Set up basic logging logging.basicConfig(level=logging.INFO) # Define the number of classes num_classes = 2 # Download model from Hugging Face def download_model(): model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path # Load the model from Hugging Face def load_model(model_path): model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model # Download the model and load it model_path = download_model() model = load_model(model_path) # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Global variable to store the file path file_path = None # Function to predict from image content def predict_from_image(image): # Ensure the image is a PIL Image if not isinstance(image, Image.Image): raise ValueError("Invalid image format received. Please provide a valid image.") # Apply transformations image_tensor = transform(image).unsqueeze(0) # Predict with torch.no_grad(): outputs = model(image_tensor) predicted_class = torch.argmax(outputs, dim=1).item() # Interpret the result if predicted_class == 0: return {"result": "The photo is of fall army worm with problem ID 126."} elif predicted_class == 1: return {"result": "The photo is of a healthy maize image."} else: return {"error": "Unexpected class prediction."} # Function to handle the file path sent via POST request def process_file_path(file_path_input): global file_path file_path = file_path_input # Store the file path logging.info(f"Received file path: {file_path}") if not os.path.exists(file_path): logging.error(f"File not found at {file_path}") return {"error": f"File not found at {file_path}"} image = Image.open(file_path) logging.info(f"Processing image from path: {file_path}") return predict_from_image(image) # Function to fetch the result (for the GET request) def fetch_result(): if file_path: image = Image.open(file_path) logging.info(f"Making prediction for image at path: {file_path}") return predict_from_image(image) else: logging.warning("No file path available. Please send a POST request with a file path first.") return {"error": "No file path available. Please send a POST request with a file path first."} # Gradio interface iface = gr.Interface( fn=process_file_path, inputs=[ gr.Textbox(label="Enter Local Image Path", placeholder="Provide the local image path"), ], outputs=gr.JSON(label="Prediction Result"), live=False, title="Maize Anomaly Detection", description="Provide a local file path via POST request to process an image.", ) # Launch the interface iface.launch(share=True, show_error=True)