import gradio as gr import torch from torch import nn from torchvision import models, transforms from huggingface_hub import hf_hub_download from PIL import Image import os import logging import requests from io import BytesIO # Setup logging logging.basicConfig(level=logging.INFO) # Define the number of classes num_classes = 2 # Download model from Hugging Face def download_model(): model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") return model_path # Load the model from Hugging Face def load_model(model_path): model = models.resnet50(pretrained=False) model.fc = nn.Linear(model.fc.in_features, num_classes) model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) model.eval() return model # Download the model and load it model_path = download_model() model = load_model(model_path) # Define the transformation for the input image transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) # Prediction function for an uploaded image def predict_from_image(image_url): try: # Download the image from the provided URL response = requests.get(image_url) response.raise_for_status() # Check if the request was successful image = Image.open(BytesIO(response.content)) # Apply transformations image_tensor = transform(image).unsqueeze(0) # Add batch dimension # Perform prediction with torch.no_grad(): outputs = model(image_tensor) predicted_class = torch.argmax(outputs, dim=1).item() # Interpret the result if predicted_class == 0: return {"result": "The photo is of fall army worm with problem ID 126."} elif predicted_class == 1: return {"result": "The photo is of a healthy maize image."} else: return {"error": "Unexpected class prediction."} except Exception as e: return {"error": str(e)} demo = gr.Interface( fn=predict_from_image, inputs="text", outputs="json", title="Image Processing", description="Enter a URL to an image", ) if __name__ == "__main__": demo.launch()