Spaces:
Sleeping
Sleeping
File size: 16,258 Bytes
6855cb4 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 6855cb4 6c93f12 6855cb4 6c93f12 ba88389 6c93f12 ba88389 6c93f12 ba88389 6c93f12 699fe5f 6855cb4 699fe5f bd402e1 699fe5f 6855cb4 699fe5f 6855cb4 699fe5f d995ec7 ba88389 d995ec7 699fe5f 6855cb4 699fe5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# Utilities to build a RAG system to query information from the
# gwIAS search pipeline using Langchain
# Thanks to Pablo Villanueva Domingo for sharing his CAMELS template
# https://huggingface.co/spaces/PabloVD/CAMELSDocBot
from langchain import hub
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain.schema import Document
import requests
import json
import base64
from bs4 import BeautifulSoup
import re
from urllib.parse import urljoin, urlparse
def github_to_raw(url):
"""Convert GitHub URL to raw content URL"""
return url.replace("github.com", "raw.githubusercontent.com").replace("/blob/", "/")
def load_github_notebook(url):
"""Load Jupyter notebook from GitHub URL using GitHub API"""
try:
# Convert GitHub blob URL to API URL
if "github.com" in url and "/blob/" in url:
# Extract owner, repo, branch and path from URL
parts = url.replace("https://github.com/", "").split("/")
owner = parts[0]
repo = parts[1]
branch = parts[3] # usually 'main' or 'master'
path = "/".join(parts[4:])
api_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}?ref={branch}"
else:
raise ValueError("URL must be a GitHub blob URL")
# Fetch notebook content
response = requests.get(api_url)
response.raise_for_status()
content_data = response.json()
if content_data.get('encoding') == 'base64':
notebook_content = base64.b64decode(content_data['content']).decode('utf-8')
else:
notebook_content = content_data['content']
# Parse notebook JSON
notebook = json.loads(notebook_content)
docs = []
cell_count = 0
# Process each cell
for cell in notebook.get('cells', []):
cell_count += 1
cell_type = cell.get('cell_type', 'unknown')
source = cell.get('source', [])
# Join source lines
if isinstance(source, list):
content = ''.join(source)
else:
content = str(source)
if content.strip(): # Only add non-empty cells
metadata = {
'source': url,
'cell_type': cell_type,
'cell_number': cell_count,
'name': f"{url} - Cell {cell_count} ({cell_type})"
}
# Add cell type prefix for better context
formatted_content = f"[{cell_type.upper()} CELL {cell_count}]\n{content}"
docs.append(Document(page_content=formatted_content, metadata=metadata))
return docs
except Exception as e:
print(f"Error loading notebook from {url}: {str(e)}")
return []
def clean_text(text):
"""Clean text content from a webpage"""
# Remove excessive newlines
text = re.sub(r'\n{3,}', '\n\n', text)
# Remove excessive whitespace
text = re.sub(r'\s{2,}', ' ', text)
return text.strip()
def clean_github_content(html_content):
"""Extract meaningful content from GitHub pages"""
# Ensure we're working with a BeautifulSoup object
if isinstance(html_content, str):
soup = BeautifulSoup(html_content, 'html.parser')
else:
soup = html_content
# Remove navigation, footer, and other boilerplate
for element in soup.find_all(['nav', 'footer', 'header']):
element.decompose()
# For README and code files
readme_content = soup.find('article', class_='markdown-body')
if readme_content:
return clean_text(readme_content.get_text())
# For code files
code_content = soup.find('table', class_='highlight')
if code_content:
return clean_text(code_content.get_text())
# For directory listings
file_list = soup.find('div', role='grid')
if file_list:
return clean_text(file_list.get_text())
# Fallback to main content
main_content = soup.find('main')
if main_content:
return clean_text(main_content.get_text())
# If no specific content found, get text from body
body = soup.find('body')
if body:
return clean_text(body.get_text())
# Final fallback
return clean_text(soup.get_text())
class GitHubLoader(WebBaseLoader):
"""Custom loader for GitHub pages with better content cleaning"""
def clean_text(self, text):
"""Clean text content"""
# Remove excessive newlines and spaces
text = re.sub(r'\n{2,}', '\n', text)
text = re.sub(r'\s{2,}', ' ', text)
# Remove common GitHub boilerplate
text = re.sub(r'Skip to content|Sign in|Search or jump to|Footer navigation|Terms|Privacy|Security|Status|Docs', '', text)
return text.strip()
def lazy_load(self) -> list[Document]:
"""Override lazy_load instead of _scrape to handle both BeautifulSoup and string returns."""
for url in self.web_paths:
try:
response = requests.get(url)
response.raise_for_status()
# For directory listings (tree URLs), use the API
if '/tree/' in url:
# Parse URL components
parts = url.replace("https://github.com/", "").split("/")
owner = parts[0]
repo = parts[1]
branch = parts[3] # usually 'main' or 'master'
path = "/".join(parts[4:]) if len(parts) > 4 else ""
# Construct API URL
api_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}?ref={branch}"
api_response = requests.get(api_url)
api_response.raise_for_status()
# Parse directory listing
contents = api_response.json()
if isinstance(contents, list):
# Format directory contents
content = "Directory contents:\n" + "\n".join([f"{item['name']} ({item['type']})" for item in contents])
yield Document(
page_content=self.clean_text(content),
metadata={'source': url, 'type': 'github_directory'}
)
continue
# For regular files, parse HTML
soup = BeautifulSoup(response.text, 'html.parser')
# For README and markdown files
readme_content = soup.find('article', class_='markdown-body')
if readme_content:
yield Document(
page_content=self.clean_text(readme_content.get_text()),
metadata={'source': url, 'type': 'github_markdown'}
)
continue
# For code files
code_content = soup.find('table', class_='highlight')
if code_content:
yield Document(
page_content=self.clean_text(code_content.get_text()),
metadata={'source': url, 'type': 'github_code'}
)
continue
# For other content, get main content
main_content = soup.find('main')
if main_content:
yield Document(
page_content=self.clean_text(main_content.get_text()),
metadata={'source': url, 'type': 'github_other'}
)
continue
# Fallback to whole page content
yield Document(
page_content=self.clean_text(soup.get_text()),
metadata={'source': url, 'type': 'github_fallback'}
)
except Exception as e:
print(f"Error processing {url}: {str(e)}")
continue
def load(self) -> list[Document]:
"""Load method that returns a list of documents."""
return list(self.lazy_load())
class ReadTheDocsLoader(WebBaseLoader):
"""Custom loader for ReadTheDocs pages"""
def __init__(self, base_url: str):
"""Initialize with base URL of the documentation."""
super().__init__([])
self.base_url = base_url.rstrip('/')
def clean_text(self, text: str) -> str:
"""Clean text content from ReadTheDocs pages."""
# Remove excessive whitespace and newlines
text = re.sub(r'\s{2,}', ' ', text)
text = re.sub(r'\n{3,}', '\n\n', text)
# Remove common ReadTheDocs boilerplate
text = re.sub(r'View page source|Next|Previous|©.*?\.', '', text)
return text.strip()
def normalize_url(self, base_url: str, href: str) -> str:
"""Normalize relative URLs to absolute URLs."""
# If it's already an absolute URL, return it
if href.startswith(('http://', 'https://')):
return href
# Handle relative URLs
return urljoin(base_url, href)
def get_all_pages(self) -> list[str]:
"""Get all documentation pages starting from the base URL."""
visited = set()
to_visit = {self.base_url}
docs_urls = set()
while to_visit:
url = to_visit.pop()
if url in visited:
continue
visited.add(url)
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Add current page if it's a documentation page
if url.startswith(self.base_url):
docs_urls.add(url)
# Find all links
for link in soup.find_all('a'):
href = link.get('href')
if not href:
continue
# Skip anchor links and external links
if href.startswith('#') or href.startswith(('http://', 'https://')) and not href.startswith(self.base_url):
continue
# Normalize the URL
full_url = self.normalize_url(url, href)
# Only follow links within the documentation domain
if full_url.startswith(self.base_url):
to_visit.add(full_url)
except Exception as e:
print(f"Error fetching {url}: {str(e)}")
return list(docs_urls)
def load(self) -> list[Document]:
"""Load all documentation pages."""
urls = self.get_all_pages()
docs = []
for url in urls:
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Get main content
main_content = soup.find('div', {'role': 'main'})
if not main_content:
main_content = soup.find('main')
if not main_content:
continue
# Clean content
content = self.clean_text(main_content.get_text())
if content:
docs.append(Document(
page_content=content,
metadata={'source': url, 'type': 'readthedocs'}
))
except Exception as e:
print(f"Error processing {url}: {str(e)}")
return docs
def load_docs():
"""Load all documentation."""
# Get urls
with open("urls.txt", "r") as f:
urls = [line.strip() for line in f.readlines()]
docs = []
# Load GitHub content
for url in urls:
if "github.com" in url or "raw.githubusercontent.com" in url:
if "/blob/" in url and url.endswith(".ipynb"):
# Handle Jupyter notebooks
notebook_docs = load_github_notebook(url)
docs.extend(notebook_docs)
elif "raw.githubusercontent.com" in url:
# Handle raw GitHub content directly
try:
response = requests.get(url)
response.raise_for_status()
content = response.text
docs.append(Document(
page_content=content,
metadata={'source': url, 'type': 'github_raw'}
))
except Exception as e:
print(f"Error loading raw content from {url}: {str(e)}")
else:
# Handle other GitHub content
loader = GitHubLoader([url])
docs.extend(loader.load())
# Load ReadTheDocs content
rtd_loader = ReadTheDocsLoader("https://gwfast.readthedocs.io/en/latest")
docs.extend(rtd_loader.load())
return docs
def extract_reference(url):
"""Extract a reference keyword from the GitHub URL"""
if "blob/main" in url:
return url.split("blob/main/")[-1]
elif "tree/main" in url:
return url.split("tree/main/")[-1] or "root"
elif "blob/master" in url:
return url.split("blob/master/")[-1]
elif "tree/master" in url:
return url.split("tree/master/")[-1] or "root"
elif "refs/heads/master" in url:
return url.split("refs/heads/master/")[-1]
return url
# Join content pages for processing
def format_docs(docs):
formatted_docs = []
for doc in docs:
source = doc.metadata.get('source', 'Unknown source')
reference = f"[{extract_reference(source)}]"
content = doc.page_content
formatted_docs.append(f"{content}\n\nReference: {reference}")
return "\n\n---\n\n".join(formatted_docs)
# Create a RAG chain
def RAG(llm, docs, embeddings):
# Split text
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
# Create vector store
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
# Retrieve and generate using the relevant snippets of the documents
retriever = vectorstore.as_retriever()
# Prompt basis example for RAG systems
prompt = hub.pull("rlm/rag-prompt")
# Adding custom instructions to the prompt
template = prompt.messages[0].prompt.template
template_parts = template.split("\nQuestion: {question}")
combined_template = "You are an assistant for question-answering tasks. "\
+ "Use the following pieces of retrieved context to answer the question. "\
+ "If you don't know the answer, just say that you don't know. "\
+ "Try to keep the answer concise if possible. "\
+ "Write the names of the relevant functions from the retrived code and include code snippets to aid the user's understanding. "\
+ "Include the references used in square brackets at the end of your answer."\
+ template_parts[1]
prompt.messages[0].prompt.template = combined_template
# Create the chain
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
return rag_chain |