File size: 2,249 Bytes
fd42425
390c504
fd42425
 
390c504
 
 
 
fd42425
 
 
 
 
 
 
 
 
390c504
 
fd42425
390c504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd42425
 
 
 
 
 
 
 
 
 
 
 
 
390c504
fd42425
390c504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#pip install transformers flash_attn
import gradio as gr
import spaces
import torch

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""

from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("jpacifico/Chocolatine-14B-Instruct-DPO-v1.2")
model = AutoModelForCausalLM.from_pretrained(
    "jpacifico/Chocolatine-14B-Instruct-DPO-v1.2",
    device_map="cuda",  
    torch_dtype="auto",  
    trust_remote_code=True,
)


@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    
    prompt = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(model.device)
    # Generate text
    # messages = model.generate(prompt, max_new_tokens=512)

    messages = model.generate(
        prompt,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        num_return_sequences=1,
        max_length=200
    )

    for message in messages:
        token = message.choices[0].delta.content

        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()