#pip install transformers flash_attn import gradio as gr import spaces import torch """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("jpacifico/Chocolatine-14B-Instruct-DPO-v1.2") model = AutoModelForCausalLM.from_pretrained( "jpacifico/Chocolatine-14B-Instruct-DPO-v1.2", device_map="cuda", torch_dtype="auto", trust_remote_code=True, ) @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" prompt = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(model.device) # Generate text # messages = model.generate(prompt, max_new_tokens=512) messages = model.generate( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200 ) for message in messages: token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()