File size: 1,448 Bytes
00296e3
 
 
 
 
 
 
 
9794766
00296e3
 
 
 
 
 
 
 
4d446d2
9794766
 
 
 
d98c77e
54c7a73
9794766
 
 
 
 
 
 
00296e3
07f1efd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from transformers import pipeline
import gradio as gr

pipe = pipeline(model="jbatista79/whisper-small-eu")  # change to "your-username/the-name-you-picked"

def transcribe(audio):
    text = pipe(audio)["text"]
    return text
'''
iface = gr.Interface(
    fn=transcribe,
    # inputs=gr.Audio(source="microphone", type="filepath"),
    inputs=gr.Audio(sources=["microphone"], type="filepath"),
    outputs="text",
    title="Whisper Small Basque - Euskara (EU)",
    description="Realtime proof-of-concept demo for Basque speech recognition using a fine-tuned Whisper small model. Created by Josué R. Batista - 2024-01-13",
)
iface.launch(share=True)
'''

with gr.Blocks() as app:
    with gr.Row():
        with gr.Column(): 
            gr.Image(value="lion-face-outline-cut-hi-strategia-black-strategia01-300x77.png", width=300, show_label=False, show_download_button=False, show_share_button=False)  # Adjust width as needed
        with gr.Column():
            gr.Markdown("## Whisper Small Basque - Euskara (EU)")
            gr.Markdown("Realtime proof-of-concept demo for Basque speech recognition using a fine-tuned Whisper small model. Created by Josué R. Batista - 2024-01-13")
    with gr.Row():
        audio_input = gr.Audio(sources=["microphone"], type="filepath")
        output_text = gr.Textbox()
    gr.Button("Transcribe").click(fn=transcribe, inputs=audio_input, outputs=output_text)

app.launch(share=True)
#app.launch()