File size: 5,500 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import { Vector3 } from 'three';


/**
 * Generates 2D-Coordinates in a very fast way.
 *
 * Based on work by:
 * @link http://www.openprocessing.org/sketch/15493
 *
 * @param {Vector3} center - Center of Hilbert curve.
 * @param {number} [size=10] - Total width of Hilbert curve.
 * @param {number} [iterations=10] - Number of subdivisions.
 * @param {number} [v0=0] - Corner index -X, -Z.
 * @param {number} [v1=1] - Corner index -X, +Z.
 * @param {number} [v2=2] - Corner index +X, +Z.
 * @param {number} [v3=3] - Corner index +X, -Z.
 * @returns {Array<Array<number>>} The Hilbert curve points.
 */
function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {

	const half = size / 2;

	const vec_s = [
		new Vector3( center.x - half, center.y, center.z - half ),
		new Vector3( center.x - half, center.y, center.z + half ),
		new Vector3( center.x + half, center.y, center.z + half ),
		new Vector3( center.x + half, center.y, center.z - half )
	];

	const vec = [
		vec_s[ v0 ],
		vec_s[ v1 ],
		vec_s[ v2 ],
		vec_s[ v3 ]
	];

	// Recurse iterations
	if ( 0 <= -- iterations ) {

		return [
			...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ),
			...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ),
			...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ),
			...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 )
		];

	}

	// Return complete Hilbert Curve.
	return vec;

}

/**
 * Generates 3D-Coordinates in a very fast way.
 *
 * Based on work by:
 * @link https://openprocessing.org/user/5654
 *
 * @param {Vector3} [center=new Vector3( 0, 0, 0 )] - Center of Hilbert curve.
 * @param {number} [size=10] - Total width of Hilbert curve.
 * @param {number} [iterations=1] - Number of subdivisions.
 * @param {number} [v0=0] - Corner index -X, +Y, -Z.
 * @param {number} [v1=1] - Corner index -X, +Y, +Z.
 * @param {number} [v2=2] - Corner index -X, -Y, +Z.
 * @param {number} [v3=3] - Corner index -X, -Y, -Z.
 * @param {number} [v4=4] - Corner index +X, -Y, -Z.
 * @param {number} [v5=5] - Corner index +X, -Y, +Z.
 * @param {number} [v6=6] - Corner index +X, +Y, +Z.
 * @param {number} [v7=7] - Corner index +X, +Y, -Z.
 * @returns {Array<Array<number>>}  - The Hilbert curve points.
 */
function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {

	// Default Vars
	const half = size / 2;

	const vec_s = [
		new Vector3( center.x - half, center.y + half, center.z - half ),
		new Vector3( center.x - half, center.y + half, center.z + half ),
		new Vector3( center.x - half, center.y - half, center.z + half ),
		new Vector3( center.x - half, center.y - half, center.z - half ),
		new Vector3( center.x + half, center.y - half, center.z - half ),
		new Vector3( center.x + half, center.y - half, center.z + half ),
		new Vector3( center.x + half, center.y + half, center.z + half ),
		new Vector3( center.x + half, center.y + half, center.z - half )
	];

	const vec = [
		vec_s[ v0 ],
		vec_s[ v1 ],
		vec_s[ v2 ],
		vec_s[ v3 ],
		vec_s[ v4 ],
		vec_s[ v5 ],
		vec_s[ v6 ],
		vec_s[ v7 ]
	];

	// Recurse iterations
	if ( -- iterations >= 0 ) {

		return [
			...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ),
			...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
			...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ),
			...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
			...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ),
			...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
			...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ),
			...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 )
		];

	}

	// Return complete Hilbert Curve.
	return vec;

}

/**
 * Generates a Gosper curve (lying in the XY plane)
 *
 * https://gist.github.com/nitaku/6521802
 *
 * @param {number} [size=1] - The size of a single gosper island.
 * @return {Array<[number, number, number]>} The gosper island points.
 */
function gosper( size = 1 ) {

	function fractalize( config ) {

		let output;
		let input = config.axiom;

		for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {

			output = '';

			for ( let j = 0, jl = input.length; j < jl; j ++ ) {

				const char = input[ j ];

				if ( char in config.rules ) {

					output += config.rules[ char ];

				} else {

					output += char;

				}

			}

			input = output;

		}

		return output;

	}

	function toPoints( config ) {

		let currX = 0, currY = 0;
		let angle = 0;
		const path = [ 0, 0, 0 ];
		const fractal = config.fractal;

		for ( let i = 0, l = fractal.length; i < l; i ++ ) {

			const char = fractal[ i ];

			if ( char === '+' ) {

				angle += config.angle;

			} else if ( char === '-' ) {

				angle -= config.angle;

			} else if ( char === 'F' ) {

				currX += config.size * Math.cos( angle );
				currY += - config.size * Math.sin( angle );
				path.push( currX, currY, 0 );

			}

		}

		return path;

	}

	//

	const gosper = fractalize( {
		axiom: 'A',
		steps: 4,
		rules: {
			A: 'A+BF++BF-FA--FAFA-BF+',
			B: '-FA+BFBF++BF+FA--FA-B'
		}
	} );

	const points = toPoints( {
		fractal: gosper,
		size: size,
		angle: Math.PI / 3 // 60 degrees
	} );

	return points;

}



export {
	hilbert2D,
	hilbert3D,
	gosper,
};