Spaces:
Running
Running
File size: 9,954 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import {
BufferAttribute,
BufferGeometry,
Color,
Line,
LineBasicMaterial,
Matrix4,
Mesh,
MeshBasicMaterial,
Object3D,
Quaternion,
SphereGeometry,
Vector3
} from 'three';
const _q = new Quaternion();
const _targetPos = new Vector3();
const _targetVec = new Vector3();
const _effectorPos = new Vector3();
const _effectorVec = new Vector3();
const _linkPos = new Vector3();
const _invLinkQ = new Quaternion();
const _linkScale = new Vector3();
const _axis = new Vector3();
const _vector = new Vector3();
const _matrix = new Matrix4();
/**
* CCD Algorithm
* - https://web.archive.org/web/20221206080850/https://sites.google.com/site/auraliusproject/ccd-algorithm
*
* // ik parameter example
* //
* // target, effector, index in links are bone index in skeleton.bones.
* // the bones relation should be
* // <-- parent child -->
* // links[ n ], links[ n - 1 ], ..., links[ 0 ], effector
* iks = [ {
* target: 1,
* effector: 2,
* links: [ { index: 5, limitation: new Vector3( 1, 0, 0 ) }, { index: 4, enabled: false }, { index : 3 } ],
* iteration: 10,
* minAngle: 0.0,
* maxAngle: 1.0,
* } ];
*/
class CCDIKSolver {
/**
* @param {THREE.SkinnedMesh} mesh
* @param {Array<Object>} iks
*/
constructor( mesh, iks = [] ) {
this.mesh = mesh;
this.iks = iks;
this._valid();
}
/**
* Update all IK bones.
*
* @return {CCDIKSolver}
*/
update() {
const iks = this.iks;
for ( let i = 0, il = iks.length; i < il; i ++ ) {
this.updateOne( iks[ i ] );
}
return this;
}
/**
* Update one IK bone
*
* @param {Object} ik parameter
* @return {CCDIKSolver}
*/
updateOne( ik ) {
const bones = this.mesh.skeleton.bones;
// for reference overhead reduction in loop
const math = Math;
const effector = bones[ ik.effector ];
const target = bones[ ik.target ];
// don't use getWorldPosition() here for the performance
// because it calls updateMatrixWorld( true ) inside.
_targetPos.setFromMatrixPosition( target.matrixWorld );
const links = ik.links;
const iteration = ik.iteration !== undefined ? ik.iteration : 1;
for ( let i = 0; i < iteration; i ++ ) {
let rotated = false;
for ( let j = 0, jl = links.length; j < jl; j ++ ) {
const link = bones[ links[ j ].index ];
// skip this link and following links
if ( links[ j ].enabled === false ) break;
const limitation = links[ j ].limitation;
const rotationMin = links[ j ].rotationMin;
const rotationMax = links[ j ].rotationMax;
// don't use getWorldPosition/Quaternion() here for the performance
// because they call updateMatrixWorld( true ) inside.
link.matrixWorld.decompose( _linkPos, _invLinkQ, _linkScale );
_invLinkQ.invert();
_effectorPos.setFromMatrixPosition( effector.matrixWorld );
// work in link world
_effectorVec.subVectors( _effectorPos, _linkPos );
_effectorVec.applyQuaternion( _invLinkQ );
_effectorVec.normalize();
_targetVec.subVectors( _targetPos, _linkPos );
_targetVec.applyQuaternion( _invLinkQ );
_targetVec.normalize();
let angle = _targetVec.dot( _effectorVec );
if ( angle > 1.0 ) {
angle = 1.0;
} else if ( angle < - 1.0 ) {
angle = - 1.0;
}
angle = math.acos( angle );
// skip if changing angle is too small to prevent vibration of bone
if ( angle < 1e-5 ) continue;
if ( ik.minAngle !== undefined && angle < ik.minAngle ) {
angle = ik.minAngle;
}
if ( ik.maxAngle !== undefined && angle > ik.maxAngle ) {
angle = ik.maxAngle;
}
_axis.crossVectors( _effectorVec, _targetVec );
_axis.normalize();
_q.setFromAxisAngle( _axis, angle );
link.quaternion.multiply( _q );
// TODO: re-consider the limitation specification
if ( limitation !== undefined ) {
let c = link.quaternion.w;
if ( c > 1.0 ) c = 1.0;
const c2 = math.sqrt( 1 - c * c );
link.quaternion.set( limitation.x * c2,
limitation.y * c2,
limitation.z * c2,
c );
}
if ( rotationMin !== undefined ) {
link.rotation.setFromVector3( _vector.setFromEuler( link.rotation ).max( rotationMin ) );
}
if ( rotationMax !== undefined ) {
link.rotation.setFromVector3( _vector.setFromEuler( link.rotation ).min( rotationMax ) );
}
link.updateMatrixWorld( true );
rotated = true;
}
if ( ! rotated ) break;
}
return this;
}
/**
* Creates Helper
*
* @param {number} sphereSize
* @return {CCDIKHelper}
*/
createHelper( sphereSize ) {
return new CCDIKHelper( this.mesh, this.iks, sphereSize );
}
// private methods
_valid() {
const iks = this.iks;
const bones = this.mesh.skeleton.bones;
for ( let i = 0, il = iks.length; i < il; i ++ ) {
const ik = iks[ i ];
const effector = bones[ ik.effector ];
const links = ik.links;
let link0, link1;
link0 = effector;
for ( let j = 0, jl = links.length; j < jl; j ++ ) {
link1 = bones[ links[ j ].index ];
if ( link0.parent !== link1 ) {
console.warn( 'THREE.CCDIKSolver: bone ' + link0.name + ' is not the child of bone ' + link1.name );
}
link0 = link1;
}
}
}
}
function getPosition( bone, matrixWorldInv ) {
return _vector
.setFromMatrixPosition( bone.matrixWorld )
.applyMatrix4( matrixWorldInv );
}
function setPositionOfBoneToAttributeArray( array, index, bone, matrixWorldInv ) {
const v = getPosition( bone, matrixWorldInv );
array[ index * 3 + 0 ] = v.x;
array[ index * 3 + 1 ] = v.y;
array[ index * 3 + 2 ] = v.z;
}
/**
* Visualize IK bones
*
* @param {SkinnedMesh} mesh
* @param {Array<Object>} iks
* @param {number} sphereSize
*/
class CCDIKHelper extends Object3D {
constructor( mesh, iks = [], sphereSize = 0.25 ) {
super();
this.root = mesh;
this.iks = iks;
this.matrix.copy( mesh.matrixWorld );
this.matrixAutoUpdate = false;
this.sphereGeometry = new SphereGeometry( sphereSize, 16, 8 );
this.targetSphereMaterial = new MeshBasicMaterial( {
color: new Color( 0xff8888 ),
depthTest: false,
depthWrite: false,
transparent: true
} );
this.effectorSphereMaterial = new MeshBasicMaterial( {
color: new Color( 0x88ff88 ),
depthTest: false,
depthWrite: false,
transparent: true
} );
this.linkSphereMaterial = new MeshBasicMaterial( {
color: new Color( 0x8888ff ),
depthTest: false,
depthWrite: false,
transparent: true
} );
this.lineMaterial = new LineBasicMaterial( {
color: new Color( 0xff0000 ),
depthTest: false,
depthWrite: false,
transparent: true
} );
this._init();
}
/**
* Updates IK bones visualization.
*
* @param {Boolean} force
*/
updateMatrixWorld( force ) {
const mesh = this.root;
if ( this.visible ) {
let offset = 0;
const iks = this.iks;
const bones = mesh.skeleton.bones;
_matrix.copy( mesh.matrixWorld ).invert();
for ( let i = 0, il = iks.length; i < il; i ++ ) {
const ik = iks[ i ];
const targetBone = bones[ ik.target ];
const effectorBone = bones[ ik.effector ];
const targetMesh = this.children[ offset ++ ];
const effectorMesh = this.children[ offset ++ ];
targetMesh.position.copy( getPosition( targetBone, _matrix ) );
effectorMesh.position.copy( getPosition( effectorBone, _matrix ) );
for ( let j = 0, jl = ik.links.length; j < jl; j ++ ) {
const link = ik.links[ j ];
const linkBone = bones[ link.index ];
const linkMesh = this.children[ offset ++ ];
linkMesh.position.copy( getPosition( linkBone, _matrix ) );
}
const line = this.children[ offset ++ ];
const array = line.geometry.attributes.position.array;
setPositionOfBoneToAttributeArray( array, 0, targetBone, _matrix );
setPositionOfBoneToAttributeArray( array, 1, effectorBone, _matrix );
for ( let j = 0, jl = ik.links.length; j < jl; j ++ ) {
const link = ik.links[ j ];
const linkBone = bones[ link.index ];
setPositionOfBoneToAttributeArray( array, j + 2, linkBone, _matrix );
}
line.geometry.attributes.position.needsUpdate = true;
}
}
this.matrix.copy( mesh.matrixWorld );
super.updateMatrixWorld( force );
}
/**
* Frees the GPU-related resources allocated by this instance. Call this method whenever this instance is no longer used in your app.
*/
dispose() {
this.sphereGeometry.dispose();
this.targetSphereMaterial.dispose();
this.effectorSphereMaterial.dispose();
this.linkSphereMaterial.dispose();
this.lineMaterial.dispose();
const children = this.children;
for ( let i = 0; i < children.length; i ++ ) {
const child = children[ i ];
if ( child.isLine ) child.geometry.dispose();
}
}
// private method
_init() {
const scope = this;
const iks = this.iks;
function createLineGeometry( ik ) {
const geometry = new BufferGeometry();
const vertices = new Float32Array( ( 2 + ik.links.length ) * 3 );
geometry.setAttribute( 'position', new BufferAttribute( vertices, 3 ) );
return geometry;
}
function createTargetMesh() {
return new Mesh( scope.sphereGeometry, scope.targetSphereMaterial );
}
function createEffectorMesh() {
return new Mesh( scope.sphereGeometry, scope.effectorSphereMaterial );
}
function createLinkMesh() {
return new Mesh( scope.sphereGeometry, scope.linkSphereMaterial );
}
function createLine( ik ) {
return new Line( createLineGeometry( ik ), scope.lineMaterial );
}
for ( let i = 0, il = iks.length; i < il; i ++ ) {
const ik = iks[ i ];
this.add( createTargetMesh() );
this.add( createEffectorMesh() );
for ( let j = 0, jl = ik.links.length; j < jl; j ++ ) {
this.add( createLinkMesh() );
}
this.add( createLine( ik ) );
}
}
}
export { CCDIKSolver, CCDIKHelper };
|