File size: 9,153 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import {
	Vector3,
	Vector4
} from 'three';

/**
 * NURBS utils
 *
 * See NURBSCurve and NURBSSurface.
 **/


/**************************************************************
 *	NURBS Utils
 **************************************************************/

/*
Finds knot vector span.

p : degree
u : parametric value
U : knot vector

returns the span
*/
function findSpan( p, u, U ) {

	const n = U.length - p - 1;

	if ( u >= U[ n ] ) {

		return n - 1;

	}

	if ( u <= U[ p ] ) {

		return p;

	}

	let low = p;
	let high = n;
	let mid = Math.floor( ( low + high ) / 2 );

	while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {

		if ( u < U[ mid ] ) {

			high = mid;

		} else {

			low = mid;

		}

		mid = Math.floor( ( low + high ) / 2 );

	}

	return mid;

}


/*
Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2

span : span in which u lies
u    : parametric point
p    : degree
U    : knot vector

returns array[p+1] with basis functions values.
*/
function calcBasisFunctions( span, u, p, U ) {

	const N = [];
	const left = [];
	const right = [];
	N[ 0 ] = 1.0;

	for ( let j = 1; j <= p; ++ j ) {

		left[ j ] = u - U[ span + 1 - j ];
		right[ j ] = U[ span + j ] - u;

		let saved = 0.0;

		for ( let r = 0; r < j; ++ r ) {

			const rv = right[ r + 1 ];
			const lv = left[ j - r ];
			const temp = N[ r ] / ( rv + lv );
			N[ r ] = saved + rv * temp;
			saved = lv * temp;

		}

		N[ j ] = saved;

	}

	return N;

}


/*
Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.

p : degree of B-Spline
U : knot vector
P : control points (x, y, z, w)
u : parametric point

returns point for given u
*/
function calcBSplinePoint( p, U, P, u ) {

	const span = findSpan( p, u, U );
	const N = calcBasisFunctions( span, u, p, U );
	const C = new Vector4( 0, 0, 0, 0 );

	for ( let j = 0; j <= p; ++ j ) {

		const point = P[ span - p + j ];
		const Nj = N[ j ];
		const wNj = point.w * Nj;
		C.x += point.x * wNj;
		C.y += point.y * wNj;
		C.z += point.z * wNj;
		C.w += point.w * Nj;

	}

	return C;

}


/*
Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.

span : span in which u lies
u    : parametric point
p    : degree
n    : number of derivatives to calculate
U    : knot vector

returns array[n+1][p+1] with basis functions derivatives
*/
function calcBasisFunctionDerivatives( span, u, p, n, U ) {

	const zeroArr = [];
	for ( let i = 0; i <= p; ++ i )
		zeroArr[ i ] = 0.0;

	const ders = [];

	for ( let i = 0; i <= n; ++ i )
		ders[ i ] = zeroArr.slice( 0 );

	const ndu = [];

	for ( let i = 0; i <= p; ++ i )
		ndu[ i ] = zeroArr.slice( 0 );

	ndu[ 0 ][ 0 ] = 1.0;

	const left = zeroArr.slice( 0 );
	const right = zeroArr.slice( 0 );

	for ( let j = 1; j <= p; ++ j ) {

		left[ j ] = u - U[ span + 1 - j ];
		right[ j ] = U[ span + j ] - u;

		let saved = 0.0;

		for ( let r = 0; r < j; ++ r ) {

			const rv = right[ r + 1 ];
			const lv = left[ j - r ];
			ndu[ j ][ r ] = rv + lv;

			const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
			ndu[ r ][ j ] = saved + rv * temp;
			saved = lv * temp;

		}

		ndu[ j ][ j ] = saved;

	}

	for ( let j = 0; j <= p; ++ j ) {

		ders[ 0 ][ j ] = ndu[ j ][ p ];

	}

	for ( let r = 0; r <= p; ++ r ) {

		let s1 = 0;
		let s2 = 1;

		const a = [];
		for ( let i = 0; i <= p; ++ i ) {

			a[ i ] = zeroArr.slice( 0 );

		}

		a[ 0 ][ 0 ] = 1.0;

		for ( let k = 1; k <= n; ++ k ) {

			let d = 0.0;
			const rk = r - k;
			const pk = p - k;

			if ( r >= k ) {

				a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
				d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];

			}

			const j1 = ( rk >= - 1 ) ? 1 : - rk;
			const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;

			for ( let j = j1; j <= j2; ++ j ) {

				a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
				d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];

			}

			if ( r <= pk ) {

				a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
				d += a[ s2 ][ k ] * ndu[ r ][ pk ];

			}

			ders[ k ][ r ] = d;

			const j = s1;
			s1 = s2;
			s2 = j;

		}

	}

	let r = p;

	for ( let k = 1; k <= n; ++ k ) {

		for ( let j = 0; j <= p; ++ j ) {

			ders[ k ][ j ] *= r;

		}

		r *= p - k;

	}

	return ders;

}


/*
	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.

	p  : degree
	U  : knot vector
	P  : control points
	u  : Parametric points
	nd : number of derivatives

	returns array[d+1] with derivatives
	*/
function calcBSplineDerivatives( p, U, P, u, nd ) {

	const du = nd < p ? nd : p;
	const CK = [];
	const span = findSpan( p, u, U );
	const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
	const Pw = [];

	for ( let i = 0; i < P.length; ++ i ) {

		const point = P[ i ].clone();
		const w = point.w;

		point.x *= w;
		point.y *= w;
		point.z *= w;

		Pw[ i ] = point;

	}

	for ( let k = 0; k <= du; ++ k ) {

		const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );

		for ( let j = 1; j <= p; ++ j ) {

			point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );

		}

		CK[ k ] = point;

	}

	for ( let k = du + 1; k <= nd + 1; ++ k ) {

		CK[ k ] = new Vector4( 0, 0, 0 );

	}

	return CK;

}


/*
Calculate "K over I"

returns k!/(i!(k-i)!)
*/
function calcKoverI( k, i ) {

	let nom = 1;

	for ( let j = 2; j <= k; ++ j ) {

		nom *= j;

	}

	let denom = 1;

	for ( let j = 2; j <= i; ++ j ) {

		denom *= j;

	}

	for ( let j = 2; j <= k - i; ++ j ) {

		denom *= j;

	}

	return nom / denom;

}


/*
Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.

Pders : result of function calcBSplineDerivatives

returns array with derivatives for rational curve.
*/
function calcRationalCurveDerivatives( Pders ) {

	const nd = Pders.length;
	const Aders = [];
	const wders = [];

	for ( let i = 0; i < nd; ++ i ) {

		const point = Pders[ i ];
		Aders[ i ] = new Vector3( point.x, point.y, point.z );
		wders[ i ] = point.w;

	}

	const CK = [];

	for ( let k = 0; k < nd; ++ k ) {

		const v = Aders[ k ].clone();

		for ( let i = 1; i <= k; ++ i ) {

			v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );

		}

		CK[ k ] = v.divideScalar( wders[ 0 ] );

	}

	return CK;

}


/*
Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.

p  : degree
U  : knot vector
P  : control points in homogeneous space
u  : parametric points
nd : number of derivatives

returns array with derivatives.
*/
function calcNURBSDerivatives( p, U, P, u, nd ) {

	const Pders = calcBSplineDerivatives( p, U, P, u, nd );
	return calcRationalCurveDerivatives( Pders );

}


/*
Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.

p, q : degrees of B-Spline surface
U, V : knot vectors
P    : control points (x, y, z, w)
u, v : parametric values

returns point for given (u, v)
*/
function calcSurfacePoint( p, q, U, V, P, u, v, target ) {

	const uspan = findSpan( p, u, U );
	const vspan = findSpan( q, v, V );
	const Nu = calcBasisFunctions( uspan, u, p, U );
	const Nv = calcBasisFunctions( vspan, v, q, V );
	const temp = [];

	for ( let l = 0; l <= q; ++ l ) {

		temp[ l ] = new Vector4( 0, 0, 0, 0 );
		for ( let k = 0; k <= p; ++ k ) {

			const point = P[ uspan - p + k ][ vspan - q + l ].clone();
			const w = point.w;
			point.x *= w;
			point.y *= w;
			point.z *= w;
			temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );

		}

	}

	const Sw = new Vector4( 0, 0, 0, 0 );
	for ( let l = 0; l <= q; ++ l ) {

		Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );

	}

	Sw.divideScalar( Sw.w );
	target.set( Sw.x, Sw.y, Sw.z );

}

/*
Calculate rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3.

p, q, r   : degrees of B-Splinevolume
U, V, W   : knot vectors
P         : control points (x, y, z, w)
u, v, w   : parametric values

returns point for given (u, v, w)
*/
function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) {

	const uspan = findSpan( p, u, U );
	const vspan = findSpan( q, v, V );
	const wspan = findSpan( r, w, W );
	const Nu = calcBasisFunctions( uspan, u, p, U );
	const Nv = calcBasisFunctions( vspan, v, q, V );
	const Nw = calcBasisFunctions( wspan, w, r, W );
	const temp = [];

	for ( let m = 0; m <= r; ++ m ) {

		temp[ m ] = [];

		for ( let l = 0; l <= q; ++ l ) {

			temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 );
			for ( let k = 0; k <= p; ++ k ) {

				const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone();
				const w = point.w;
				point.x *= w;
				point.y *= w;
				point.z *= w;
				temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) );

			}

		}

	}

	const Sw = new Vector4( 0, 0, 0, 0 );
	for ( let m = 0; m <= r; ++ m ) {

		for ( let l = 0; l <= q; ++ l ) {

			Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) );

		}

	}

	Sw.divideScalar( Sw.w );
	target.set( Sw.x, Sw.y, Sw.z );

}


export {
	findSpan,
	calcBasisFunctions,
	calcBSplinePoint,
	calcBasisFunctionDerivatives,
	calcBSplineDerivatives,
	calcKoverI,
	calcRationalCurveDerivatives,
	calcNURBSDerivatives,
	calcSurfacePoint,
	calcVolumePoint,
};