File size: 21,832 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
import {
	Line3,
	Plane,
	Triangle,
	Vector3
} from 'three';

/**
 * Ported from: https://github.com/maurizzzio/quickhull3d/ by Mauricio Poppe (https://github.com/maurizzzio)
 */

const Visible = 0;
const Deleted = 1;

const _v1 = new Vector3();
const _line3 = new Line3();
const _plane = new Plane();
const _closestPoint = new Vector3();
const _triangle = new Triangle();

class ConvexHull {

	constructor() {

		this.tolerance = - 1;

		this.faces = []; // the generated faces of the convex hull
		this.newFaces = []; // this array holds the faces that are generated within a single iteration

		// the vertex lists work as follows:
		//
		// let 'a' and 'b' be 'Face' instances
		// let 'v' be points wrapped as instance of 'Vertex'
		//
		//     [v, v, ..., v, v, v, ...]
		//      ^             ^
		//      |             |
		//  a.outside     b.outside
		//
		this.assigned = new VertexList();
		this.unassigned = new VertexList();

		this.vertices = []; 	// vertices of the hull (internal representation of given geometry data)

	}

	setFromPoints( points ) {

		// The algorithm needs at least four points.

		if ( points.length >= 4 ) {

			this.makeEmpty();

			for ( let i = 0, l = points.length; i < l; i ++ ) {

				this.vertices.push( new VertexNode( points[ i ] ) );

			}

			this.compute();

		}

		return this;

	}

	setFromObject( object ) {

		const points = [];

		object.updateMatrixWorld( true );

		object.traverse( function ( node ) {

			const geometry = node.geometry;

			if ( geometry !== undefined ) {

				const attribute = geometry.attributes.position;

				if ( attribute !== undefined ) {

					for ( let i = 0, l = attribute.count; i < l; i ++ ) {

						const point = new Vector3();

						point.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );

						points.push( point );

					}

				}

			}

		} );

		return this.setFromPoints( points );

	}

	containsPoint( point ) {

		const faces = this.faces;

		for ( let i = 0, l = faces.length; i < l; i ++ ) {

			const face = faces[ i ];

			// compute signed distance and check on what half space the point lies

			if ( face.distanceToPoint( point ) > this.tolerance ) return false;

		}

		return true;

	}

	intersectRay( ray, target ) {

		// based on "Fast Ray-Convex Polyhedron Intersection" by Eric Haines, GRAPHICS GEMS II

		const faces = this.faces;

		let tNear = - Infinity;
		let tFar = Infinity;

		for ( let i = 0, l = faces.length; i < l; i ++ ) {

			const face = faces[ i ];

			// interpret faces as planes for the further computation

			const vN = face.distanceToPoint( ray.origin );
			const vD = face.normal.dot( ray.direction );

			// if the origin is on the positive side of a plane (so the plane can "see" the origin) and
			// the ray is turned away or parallel to the plane, there is no intersection

			if ( vN > 0 && vD >= 0 ) return null;

			// compute the distance from the ray’s origin to the intersection with the plane

			const t = ( vD !== 0 ) ? ( - vN / vD ) : 0;

			// only proceed if the distance is positive. a negative distance means the intersection point
			// lies "behind" the origin

			if ( t <= 0 ) continue;

			// now categorized plane as front-facing or back-facing

			if ( vD > 0 ) {

				// plane faces away from the ray, so this plane is a back-face

				tFar = Math.min( t, tFar );

			} else {

				// front-face

				tNear = Math.max( t, tNear );

			}

			if ( tNear > tFar ) {

				// if tNear ever is greater than tFar, the ray must miss the convex hull

				return null;

			}

		}

		// evaluate intersection point

		// always try tNear first since its the closer intersection point

		if ( tNear !== - Infinity ) {

			ray.at( tNear, target );

		} else {

			ray.at( tFar, target );

		}

		return target;

	}

	intersectsRay( ray ) {

		return this.intersectRay( ray, _v1 ) !== null;

	}

	makeEmpty() {

		this.faces = [];
		this.vertices = [];

		return this;

	}

	// Adds a vertex to the 'assigned' list of vertices and assigns it to the given face

	addVertexToFace( vertex, face ) {

		vertex.face = face;

		if ( face.outside === null ) {

			this.assigned.append( vertex );

		} else {

			this.assigned.insertBefore( face.outside, vertex );

		}

		face.outside = vertex;

		return this;

	}

	// Removes a vertex from the 'assigned' list of vertices and from the given face

	removeVertexFromFace( vertex, face ) {

		if ( vertex === face.outside ) {

			// fix face.outside link

			if ( vertex.next !== null && vertex.next.face === face ) {

				// face has at least 2 outside vertices, move the 'outside' reference

				face.outside = vertex.next;

			} else {

				// vertex was the only outside vertex that face had

				face.outside = null;

			}

		}

		this.assigned.remove( vertex );

		return this;

	}

	// Removes all the visible vertices that a given face is able to see which are stored in the 'assigned' vertex list

	removeAllVerticesFromFace( face ) {

		if ( face.outside !== null ) {

			// reference to the first and last vertex of this face

			const start = face.outside;
			let end = face.outside;

			while ( end.next !== null && end.next.face === face ) {

				end = end.next;

			}

			this.assigned.removeSubList( start, end );

			// fix references

			start.prev = end.next = null;
			face.outside = null;

			return start;

		}

	}

	// Removes all the visible vertices that 'face' is able to see

	deleteFaceVertices( face, absorbingFace ) {

		const faceVertices = this.removeAllVerticesFromFace( face );

		if ( faceVertices !== undefined ) {

			if ( absorbingFace === undefined ) {

				// mark the vertices to be reassigned to some other face

				this.unassigned.appendChain( faceVertices );


			} else {

				// if there's an absorbing face try to assign as many vertices as possible to it

				let vertex = faceVertices;

				do {

					// we need to buffer the subsequent vertex at this point because the 'vertex.next' reference
					// will be changed by upcoming method calls

					const nextVertex = vertex.next;

					const distance = absorbingFace.distanceToPoint( vertex.point );

					// check if 'vertex' is able to see 'absorbingFace'

					if ( distance > this.tolerance ) {

						this.addVertexToFace( vertex, absorbingFace );

					} else {

						this.unassigned.append( vertex );

					}

					// now assign next vertex

					vertex = nextVertex;

				} while ( vertex !== null );

			}

		}

		return this;

	}

	// Reassigns as many vertices as possible from the unassigned list to the new faces

	resolveUnassignedPoints( newFaces ) {

		if ( this.unassigned.isEmpty() === false ) {

			let vertex = this.unassigned.first();

			do {

				// buffer 'next' reference, see .deleteFaceVertices()

				const nextVertex = vertex.next;

				let maxDistance = this.tolerance;

				let maxFace = null;

				for ( let i = 0; i < newFaces.length; i ++ ) {

					const face = newFaces[ i ];

					if ( face.mark === Visible ) {

						const distance = face.distanceToPoint( vertex.point );

						if ( distance > maxDistance ) {

							maxDistance = distance;
							maxFace = face;

						}

						if ( maxDistance > 1000 * this.tolerance ) break;

					}

				}

				// 'maxFace' can be null e.g. if there are identical vertices

				if ( maxFace !== null ) {

					this.addVertexToFace( vertex, maxFace );

				}

				vertex = nextVertex;

			} while ( vertex !== null );

		}

		return this;

	}

	// Computes the extremes of a simplex which will be the initial hull

	computeExtremes() {

		const min = new Vector3();
		const max = new Vector3();

		const minVertices = [];
		const maxVertices = [];

		// initially assume that the first vertex is the min/max

		for ( let i = 0; i < 3; i ++ ) {

			minVertices[ i ] = maxVertices[ i ] = this.vertices[ 0 ];

		}

		min.copy( this.vertices[ 0 ].point );
		max.copy( this.vertices[ 0 ].point );

		// compute the min/max vertex on all six directions

		for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {

			const vertex = this.vertices[ i ];
			const point = vertex.point;

			// update the min coordinates

			for ( let j = 0; j < 3; j ++ ) {

				if ( point.getComponent( j ) < min.getComponent( j ) ) {

					min.setComponent( j, point.getComponent( j ) );
					minVertices[ j ] = vertex;

				}

			}

			// update the max coordinates

			for ( let j = 0; j < 3; j ++ ) {

				if ( point.getComponent( j ) > max.getComponent( j ) ) {

					max.setComponent( j, point.getComponent( j ) );
					maxVertices[ j ] = vertex;

				}

			}

		}

		// use min/max vectors to compute an optimal epsilon

		this.tolerance = 3 * Number.EPSILON * (
			Math.max( Math.abs( min.x ), Math.abs( max.x ) ) +
			Math.max( Math.abs( min.y ), Math.abs( max.y ) ) +
			Math.max( Math.abs( min.z ), Math.abs( max.z ) )
		);

		return { min: minVertices, max: maxVertices };

	}

	// Computes the initial simplex assigning to its faces all the points
	// that are candidates to form part of the hull

	computeInitialHull() {

		const vertices = this.vertices;
		const extremes = this.computeExtremes();
		const min = extremes.min;
		const max = extremes.max;

		// 1. Find the two vertices 'v0' and 'v1' with the greatest 1d separation
		// (max.x - min.x)
		// (max.y - min.y)
		// (max.z - min.z)

		let maxDistance = 0;
		let index = 0;

		for ( let i = 0; i < 3; i ++ ) {

			const distance = max[ i ].point.getComponent( i ) - min[ i ].point.getComponent( i );

			if ( distance > maxDistance ) {

				maxDistance = distance;
				index = i;

			}

		}

		const v0 = min[ index ];
		const v1 = max[ index ];
		let v2;
		let v3;

		// 2. The next vertex 'v2' is the one farthest to the line formed by 'v0' and 'v1'

		maxDistance = 0;
		_line3.set( v0.point, v1.point );

		for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {

			const vertex = vertices[ i ];

			if ( vertex !== v0 && vertex !== v1 ) {

				_line3.closestPointToPoint( vertex.point, true, _closestPoint );

				const distance = _closestPoint.distanceToSquared( vertex.point );

				if ( distance > maxDistance ) {

					maxDistance = distance;
					v2 = vertex;

				}

			}

		}

		// 3. The next vertex 'v3' is the one farthest to the plane 'v0', 'v1', 'v2'

		maxDistance = - 1;
		_plane.setFromCoplanarPoints( v0.point, v1.point, v2.point );

		for ( let i = 0, l = this.vertices.length; i < l; i ++ ) {

			const vertex = vertices[ i ];

			if ( vertex !== v0 && vertex !== v1 && vertex !== v2 ) {

				const distance = Math.abs( _plane.distanceToPoint( vertex.point ) );

				if ( distance > maxDistance ) {

					maxDistance = distance;
					v3 = vertex;

				}

			}

		}

		const faces = [];

		if ( _plane.distanceToPoint( v3.point ) < 0 ) {

			// the face is not able to see the point so 'plane.normal' is pointing outside the tetrahedron

			faces.push(
				Face.create( v0, v1, v2 ),
				Face.create( v3, v1, v0 ),
				Face.create( v3, v2, v1 ),
				Face.create( v3, v0, v2 )
			);

			// set the twin edge

			for ( let i = 0; i < 3; i ++ ) {

				const j = ( i + 1 ) % 3;

				// join face[ i ] i > 0, with the first face

				faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( j ) );

				// join face[ i ] with face[ i + 1 ], 1 <= i <= 3

				faces[ i + 1 ].getEdge( 1 ).setTwin( faces[ j + 1 ].getEdge( 0 ) );

			}

		} else {

			// the face is able to see the point so 'plane.normal' is pointing inside the tetrahedron

			faces.push(
				Face.create( v0, v2, v1 ),
				Face.create( v3, v0, v1 ),
				Face.create( v3, v1, v2 ),
				Face.create( v3, v2, v0 )
			);

			// set the twin edge

			for ( let i = 0; i < 3; i ++ ) {

				const j = ( i + 1 ) % 3;

				// join face[ i ] i > 0, with the first face

				faces[ i + 1 ].getEdge( 2 ).setTwin( faces[ 0 ].getEdge( ( 3 - i ) % 3 ) );

				// join face[ i ] with face[ i + 1 ]

				faces[ i + 1 ].getEdge( 0 ).setTwin( faces[ j + 1 ].getEdge( 1 ) );

			}

		}

		// the initial hull is the tetrahedron

		for ( let i = 0; i < 4; i ++ ) {

			this.faces.push( faces[ i ] );

		}

		// initial assignment of vertices to the faces of the tetrahedron

		for ( let i = 0, l = vertices.length; i < l; i ++ ) {

			const vertex = vertices[ i ];

			if ( vertex !== v0 && vertex !== v1 && vertex !== v2 && vertex !== v3 ) {

				maxDistance = this.tolerance;
				let maxFace = null;

				for ( let j = 0; j < 4; j ++ ) {

					const distance = this.faces[ j ].distanceToPoint( vertex.point );

					if ( distance > maxDistance ) {

						maxDistance = distance;
						maxFace = this.faces[ j ];

					}

				}

				if ( maxFace !== null ) {

					this.addVertexToFace( vertex, maxFace );

				}

			}

		}

		return this;

	}

	// Removes inactive faces

	reindexFaces() {

		const activeFaces = [];

		for ( let i = 0; i < this.faces.length; i ++ ) {

			const face = this.faces[ i ];

			if ( face.mark === Visible ) {

				activeFaces.push( face );

			}

		}

		this.faces = activeFaces;

		return this;

	}

	// Finds the next vertex to create faces with the current hull

	nextVertexToAdd() {

		// if the 'assigned' list of vertices is empty, no vertices are left. return with 'undefined'

		if ( this.assigned.isEmpty() === false ) {

			let eyeVertex, maxDistance = 0;

			// grab the first available face and start with the first visible vertex of that face

			const eyeFace = this.assigned.first().face;
			let vertex = eyeFace.outside;

			// now calculate the farthest vertex that face can see

			do {

				const distance = eyeFace.distanceToPoint( vertex.point );

				if ( distance > maxDistance ) {

					maxDistance = distance;
					eyeVertex = vertex;

				}

				vertex = vertex.next;

			} while ( vertex !== null && vertex.face === eyeFace );

			return eyeVertex;

		}

	}

	// Computes a chain of half edges in CCW order called the 'horizon'.
	// For an edge to be part of the horizon it must join a face that can see
	// 'eyePoint' and a face that cannot see 'eyePoint'.

	computeHorizon( eyePoint, crossEdge, face, horizon ) {

		// moves face's vertices to the 'unassigned' vertex list

		this.deleteFaceVertices( face );

		face.mark = Deleted;

		let edge;

		if ( crossEdge === null ) {

			edge = crossEdge = face.getEdge( 0 );

		} else {

			// start from the next edge since 'crossEdge' was already analyzed
			// (actually 'crossEdge.twin' was the edge who called this method recursively)

			edge = crossEdge.next;

		}

		do {

			const twinEdge = edge.twin;
			const oppositeFace = twinEdge.face;

			if ( oppositeFace.mark === Visible ) {

				if ( oppositeFace.distanceToPoint( eyePoint ) > this.tolerance ) {

					// the opposite face can see the vertex, so proceed with next edge

					this.computeHorizon( eyePoint, twinEdge, oppositeFace, horizon );

				} else {

					// the opposite face can't see the vertex, so this edge is part of the horizon

					horizon.push( edge );

				}

			}

			edge = edge.next;

		} while ( edge !== crossEdge );

		return this;

	}

	// Creates a face with the vertices 'eyeVertex.point', 'horizonEdge.tail' and 'horizonEdge.head' in CCW order

	addAdjoiningFace( eyeVertex, horizonEdge ) {

		// all the half edges are created in ccw order thus the face is always pointing outside the hull

		const face = Face.create( eyeVertex, horizonEdge.tail(), horizonEdge.head() );

		this.faces.push( face );

		// join face.getEdge( - 1 ) with the horizon's opposite edge face.getEdge( - 1 ) = face.getEdge( 2 )

		face.getEdge( - 1 ).setTwin( horizonEdge.twin );

		return face.getEdge( 0 ); // the half edge whose vertex is the eyeVertex


	}

	//  Adds 'horizon.length' faces to the hull, each face will be linked with the
	//  horizon opposite face and the face on the left/right

	addNewFaces( eyeVertex, horizon ) {

		this.newFaces = [];

		let firstSideEdge = null;
		let previousSideEdge = null;

		for ( let i = 0; i < horizon.length; i ++ ) {

			const horizonEdge = horizon[ i ];

			// returns the right side edge

			const sideEdge = this.addAdjoiningFace( eyeVertex, horizonEdge );

			if ( firstSideEdge === null ) {

				firstSideEdge = sideEdge;

			} else {

				// joins face.getEdge( 1 ) with previousFace.getEdge( 0 )

				sideEdge.next.setTwin( previousSideEdge );

			}

			this.newFaces.push( sideEdge.face );
			previousSideEdge = sideEdge;

		}

		// perform final join of new faces

		firstSideEdge.next.setTwin( previousSideEdge );

		return this;

	}

	// Adds a vertex to the hull

	addVertexToHull( eyeVertex ) {

		const horizon = [];

		this.unassigned.clear();

		// remove 'eyeVertex' from 'eyeVertex.face' so that it can't be added to the 'unassigned' vertex list

		this.removeVertexFromFace( eyeVertex, eyeVertex.face );

		this.computeHorizon( eyeVertex.point, null, eyeVertex.face, horizon );

		this.addNewFaces( eyeVertex, horizon );

		// reassign 'unassigned' vertices to the new faces

		this.resolveUnassignedPoints( this.newFaces );

		return	this;

	}

	cleanup() {

		this.assigned.clear();
		this.unassigned.clear();
		this.newFaces = [];

		return this;

	}

	compute() {

		let vertex;

		this.computeInitialHull();

		// add all available vertices gradually to the hull

		while ( ( vertex = this.nextVertexToAdd() ) !== undefined ) {

			this.addVertexToHull( vertex );

		}

		this.reindexFaces();

		this.cleanup();

		return this;

	}

}

//

class Face {

	constructor() {

		this.normal = new Vector3();
		this.midpoint = new Vector3();
		this.area = 0;

		this.constant = 0; // signed distance from face to the origin
		this.outside = null; // reference to a vertex in a vertex list this face can see
		this.mark = Visible;
		this.edge = null;

	}

	static create( a, b, c ) {

		const face = new Face();

		const e0 = new HalfEdge( a, face );
		const e1 = new HalfEdge( b, face );
		const e2 = new HalfEdge( c, face );

		// join edges

		e0.next = e2.prev = e1;
		e1.next = e0.prev = e2;
		e2.next = e1.prev = e0;

		// main half edge reference

		face.edge = e0;

		return face.compute();

	}

	getEdge( i ) {

		let edge = this.edge;

		while ( i > 0 ) {

			edge = edge.next;
			i --;

		}

		while ( i < 0 ) {

			edge = edge.prev;
			i ++;

		}

		return edge;

	}

	compute() {

		const a = this.edge.tail();
		const b = this.edge.head();
		const c = this.edge.next.head();

		_triangle.set( a.point, b.point, c.point );

		_triangle.getNormal( this.normal );
		_triangle.getMidpoint( this.midpoint );
		this.area = _triangle.getArea();

		this.constant = this.normal.dot( this.midpoint );

		return this;

	}

	distanceToPoint( point ) {

		return this.normal.dot( point ) - this.constant;

	}

}

// Entity for a Doubly-Connected Edge List (DCEL).

class HalfEdge {


	constructor( vertex, face ) {

		this.vertex = vertex;
		this.prev = null;
		this.next = null;
		this.twin = null;
		this.face = face;

	}

	head() {

		return this.vertex;

	}

	tail() {

		return this.prev ? this.prev.vertex : null;

	}

	length() {

		const head = this.head();
		const tail = this.tail();

		if ( tail !== null ) {

			return tail.point.distanceTo( head.point );

		}

		return - 1;

	}

	lengthSquared() {

		const head = this.head();
		const tail = this.tail();

		if ( tail !== null ) {

			return tail.point.distanceToSquared( head.point );

		}

		return - 1;

	}

	setTwin( edge ) {

		this.twin = edge;
		edge.twin = this;

		return this;

	}

}

// A vertex as a double linked list node.

class VertexNode {

	constructor( point ) {

		this.point = point;
		this.prev = null;
		this.next = null;
		this.face = null; // the face that is able to see this vertex

	}

}

// A double linked list that contains vertex nodes.

class VertexList {

	constructor() {

		this.head = null;
		this.tail = null;

	}

	first() {

		return this.head;

	}

	last() {

		return this.tail;

	}

	clear() {

		this.head = this.tail = null;

		return this;

	}

	// Inserts a vertex before the target vertex

	insertBefore( target, vertex ) {

		vertex.prev = target.prev;
		vertex.next = target;

		if ( vertex.prev === null ) {

			this.head = vertex;

		} else {

			vertex.prev.next = vertex;

		}

		target.prev = vertex;

		return this;

	}

	// Inserts a vertex after the target vertex

	insertAfter( target, vertex ) {

		vertex.prev = target;
		vertex.next = target.next;

		if ( vertex.next === null ) {

			this.tail = vertex;

		} else {

			vertex.next.prev = vertex;

		}

		target.next = vertex;

		return this;

	}

	// Appends a vertex to the end of the linked list

	append( vertex ) {

		if ( this.head === null ) {

			this.head = vertex;

		} else {

			this.tail.next = vertex;

		}

		vertex.prev = this.tail;
		vertex.next = null; // the tail has no subsequent vertex

		this.tail = vertex;

		return this;

	}

	// Appends a chain of vertices where 'vertex' is the head.

	appendChain( vertex ) {

		if ( this.head === null ) {

			this.head = vertex;

		} else {

			this.tail.next = vertex;

		}

		vertex.prev = this.tail;

		// ensure that the 'tail' reference points to the last vertex of the chain

		while ( vertex.next !== null ) {

			vertex = vertex.next;

		}

		this.tail = vertex;

		return this;

	}

	// Removes a vertex from the linked list

	remove( vertex ) {

		if ( vertex.prev === null ) {

			this.head = vertex.next;

		} else {

			vertex.prev.next = vertex.next;

		}

		if ( vertex.next === null ) {

			this.tail = vertex.prev;

		} else {

			vertex.next.prev = vertex.prev;

		}

		return this;

	}

	// Removes a list of vertices whose 'head' is 'a' and whose 'tail' is b

	removeSubList( a, b ) {

		if ( a.prev === null ) {

			this.head = b.next;

		} else {

			a.prev.next = b.next;

		}

		if ( b.next === null ) {

			this.tail = a.prev;

		} else {

			b.next.prev = a.prev;

		}

		return this;

	}

	isEmpty() {

		return this.head === null;

	}

}

export { ConvexHull, Face, HalfEdge, VertexNode, VertexList };