File size: 10,602 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import {
	Box3,
	MathUtils,
	Matrix4,
	Matrix3,
	Ray,
	Vector3
} from 'three';

// module scope helper variables

const a = {
	c: null, // center
	u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors
	e: [] // half width
};

const b = {
	c: null, // center
	u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors
	e: [] // half width
};

const R = [[], [], []];
const AbsR = [[], [], []];
const t = [];

const xAxis = new Vector3();
const yAxis = new Vector3();
const zAxis = new Vector3();
const v1 = new Vector3();
const size = new Vector3();
const closestPoint = new Vector3();
const rotationMatrix = new Matrix3();
const aabb = new Box3();
const matrix = new Matrix4();
const inverse = new Matrix4();
const localRay = new Ray();

// OBB

class OBB {

	constructor( center = new Vector3(), halfSize = new Vector3(), rotation = new Matrix3() ) {

		this.center = center;
		this.halfSize = halfSize;
		this.rotation = rotation;

	}

	set( center, halfSize, rotation ) {

		this.center = center;
		this.halfSize = halfSize;
		this.rotation = rotation;

		return this;

	}

	copy( obb ) {

		this.center.copy( obb.center );
		this.halfSize.copy( obb.halfSize );
		this.rotation.copy( obb.rotation );

		return this;

	}

	clone() {

		return new this.constructor().copy( this );

	}

	getSize( result ) {

		return result.copy( this.halfSize ).multiplyScalar( 2 );

	}

	/**
	* Reference: Closest Point on OBB to Point in Real-Time Collision Detection
	* by Christer Ericson (chapter 5.1.4)
	*
	* @param {Vector3} point
	* @param {Vector3} result
	* @returns {Vector3}
	*/
	clampPoint( point, result ) {

		const halfSize = this.halfSize;

		v1.subVectors( point, this.center );
		this.rotation.extractBasis( xAxis, yAxis, zAxis );

		// start at the center position of the OBB

		result.copy( this.center );

		// project the target onto the OBB axes and walk towards that point

		const x = MathUtils.clamp( v1.dot( xAxis ), - halfSize.x, halfSize.x );
		result.add( xAxis.multiplyScalar( x ) );

		const y = MathUtils.clamp( v1.dot( yAxis ), - halfSize.y, halfSize.y );
		result.add( yAxis.multiplyScalar( y ) );

		const z = MathUtils.clamp( v1.dot( zAxis ), - halfSize.z, halfSize.z );
		result.add( zAxis.multiplyScalar( z ) );

		return result;

	}

	containsPoint( point ) {

		v1.subVectors( point, this.center );
		this.rotation.extractBasis( xAxis, yAxis, zAxis );

		// project v1 onto each axis and check if these points lie inside the OBB

		return Math.abs( v1.dot( xAxis ) ) <= this.halfSize.x &&
				Math.abs( v1.dot( yAxis ) ) <= this.halfSize.y &&
				Math.abs( v1.dot( zAxis ) ) <= this.halfSize.z;

	}

	intersectsBox3( box3 ) {

		return this.intersectsOBB( obb.fromBox3( box3 ) );

	}

	intersectsSphere( sphere ) {

		// find the point on the OBB closest to the sphere center

		this.clampPoint( sphere.center, closestPoint );

		// if that point is inside the sphere, the OBB and sphere intersect

		return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );

	}

	/**
	* Reference: OBB-OBB Intersection in Real-Time Collision Detection
	* by Christer Ericson (chapter 4.4.1)
	*
	* @param {OBB} obb
	* @param {Number} [epsilon=Number.EPSILON] - A small value to prevent arithmetic errors
	* @returns {Boolean}
	*/
	intersectsOBB( obb, epsilon = Number.EPSILON ) {

		// prepare data structures (the code uses the same nomenclature like the reference)

		a.c = this.center;
		a.e[ 0 ] = this.halfSize.x;
		a.e[ 1 ] = this.halfSize.y;
		a.e[ 2 ] = this.halfSize.z;
		this.rotation.extractBasis( a.u[ 0 ], a.u[ 1 ], a.u[ 2 ] );

		b.c = obb.center;
		b.e[ 0 ] = obb.halfSize.x;
		b.e[ 1 ] = obb.halfSize.y;
		b.e[ 2 ] = obb.halfSize.z;
		obb.rotation.extractBasis( b.u[ 0 ], b.u[ 1 ], b.u[ 2 ] );

		// compute rotation matrix expressing b in a's coordinate frame

		for ( let i = 0; i < 3; i ++ ) {

			for ( let j = 0; j < 3; j ++ ) {

				R[ i ][ j ] = a.u[ i ].dot( b.u[ j ] );

			}

		}

		// compute translation vector

		v1.subVectors( b.c, a.c );

		// bring translation into a's coordinate frame

		t[ 0 ] = v1.dot( a.u[ 0 ] );
		t[ 1 ] = v1.dot( a.u[ 1 ] );
		t[ 2 ] = v1.dot( a.u[ 2 ] );

		// compute common subexpressions. Add in an epsilon term to
		// counteract arithmetic errors when two edges are parallel and
		// their cross product is (near) null

		for ( let i = 0; i < 3; i ++ ) {

			for ( let j = 0; j < 3; j ++ ) {

				AbsR[ i ][ j ] = Math.abs( R[ i ][ j ] ) + epsilon;

			}

		}

		let ra, rb;

		// test axes L = A0, L = A1, L = A2

		for ( let i = 0; i < 3; i ++ ) {

			ra = a.e[ i ];
			rb = b.e[ 0 ] * AbsR[ i ][ 0 ] + b.e[ 1 ] * AbsR[ i ][ 1 ] + b.e[ 2 ] * AbsR[ i ][ 2 ];
			if ( Math.abs( t[ i ] ) > ra + rb ) return false;


		}

		// test axes L = B0, L = B1, L = B2

		for ( let i = 0; i < 3; i ++ ) {

			ra = a.e[ 0 ] * AbsR[ 0 ][ i ] + a.e[ 1 ] * AbsR[ 1 ][ i ] + a.e[ 2 ] * AbsR[ 2 ][ i ];
			rb = b.e[ i ];
			if ( Math.abs( t[ 0 ] * R[ 0 ][ i ] + t[ 1 ] * R[ 1 ][ i ] + t[ 2 ] * R[ 2 ][ i ] ) > ra + rb ) return false;

		}

		// test axis L = A0 x B0

		ra = a.e[ 1 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 1 ][ 0 ];
		rb = b.e[ 1 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 1 ];
		if ( Math.abs( t[ 2 ] * R[ 1 ][ 0 ] - t[ 1 ] * R[ 2 ][ 0 ] ) > ra + rb ) return false;

		// test axis L = A0 x B1

		ra = a.e[ 1 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 1 ][ 1 ];
		rb = b.e[ 0 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 0 ];
		if ( Math.abs( t[ 2 ] * R[ 1 ][ 1 ] - t[ 1 ] * R[ 2 ][ 1 ] ) > ra + rb ) return false;

		// test axis L = A0 x B2

		ra = a.e[ 1 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 1 ][ 2 ];
		rb = b.e[ 0 ] * AbsR[ 0 ][ 1 ] + b.e[ 1 ] * AbsR[ 0 ][ 0 ];
		if ( Math.abs( t[ 2 ] * R[ 1 ][ 2 ] - t[ 1 ] * R[ 2 ][ 2 ] ) > ra + rb ) return false;

		// test axis L = A1 x B0

		ra = a.e[ 0 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 0 ][ 0 ];
		rb = b.e[ 1 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 1 ];
		if ( Math.abs( t[ 0 ] * R[ 2 ][ 0 ] - t[ 2 ] * R[ 0 ][ 0 ] ) > ra + rb ) return false;

		// test axis L = A1 x B1

		ra = a.e[ 0 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 0 ][ 1 ];
		rb = b.e[ 0 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 0 ];
		if ( Math.abs( t[ 0 ] * R[ 2 ][ 1 ] - t[ 2 ] * R[ 0 ][ 1 ] ) > ra + rb ) return false;

		// test axis L = A1 x B2

		ra = a.e[ 0 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 0 ][ 2 ];
		rb = b.e[ 0 ] * AbsR[ 1 ][ 1 ] + b.e[ 1 ] * AbsR[ 1 ][ 0 ];
		if ( Math.abs( t[ 0 ] * R[ 2 ][ 2 ] - t[ 2 ] * R[ 0 ][ 2 ] ) > ra + rb ) return false;

		// test axis L = A2 x B0

		ra = a.e[ 0 ] * AbsR[ 1 ][ 0 ] + a.e[ 1 ] * AbsR[ 0 ][ 0 ];
		rb = b.e[ 1 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 1 ];
		if ( Math.abs( t[ 1 ] * R[ 0 ][ 0 ] - t[ 0 ] * R[ 1 ][ 0 ] ) > ra + rb ) return false;

		// test axis L = A2 x B1

		ra = a.e[ 0 ] * AbsR[ 1 ][ 1 ] + a.e[ 1 ] * AbsR[ 0 ][ 1 ];
		rb = b.e[ 0 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 0 ];
		if ( Math.abs( t[ 1 ] * R[ 0 ][ 1 ] - t[ 0 ] * R[ 1 ][ 1 ] ) > ra + rb ) return false;

		// test axis L = A2 x B2

		ra = a.e[ 0 ] * AbsR[ 1 ][ 2 ] + a.e[ 1 ] * AbsR[ 0 ][ 2 ];
		rb = b.e[ 0 ] * AbsR[ 2 ][ 1 ] + b.e[ 1 ] * AbsR[ 2 ][ 0 ];
		if ( Math.abs( t[ 1 ] * R[ 0 ][ 2 ] - t[ 0 ] * R[ 1 ][ 2 ] ) > ra + rb ) return false;

		// since no separating axis is found, the OBBs must be intersecting

		return true;

	}

	/**
	* Reference: Testing Box Against Plane in Real-Time Collision Detection
	* by Christer Ericson (chapter 5.2.3)
	*
	* @param {Plane} plane
	* @returns {Boolean}
	*/
	intersectsPlane( plane ) {

		this.rotation.extractBasis( xAxis, yAxis, zAxis );

		// compute the projection interval radius of this OBB onto L(t) = this->center + t * p.normal;

		const r = this.halfSize.x * Math.abs( plane.normal.dot( xAxis ) ) +
				this.halfSize.y * Math.abs( plane.normal.dot( yAxis ) ) +
				this.halfSize.z * Math.abs( plane.normal.dot( zAxis ) );

		// compute distance of the OBB's center from the plane

		const d = plane.normal.dot( this.center ) - plane.constant;

		// Intersection occurs when distance d falls within [-r,+r] interval

		return Math.abs( d ) <= r;

	}

	/**
	* Performs a ray/OBB intersection test and stores the intersection point
	* to the given 3D vector. If no intersection is detected, *null* is returned.
	*
	* @param {Ray} ray
	* @param {Vector3} result
	* @return {Vector3?}
	*/
	intersectRay( ray, result ) {

		// the idea is to perform the intersection test in the local space
		// of the OBB.

		this.getSize( size );
		aabb.setFromCenterAndSize( v1.set( 0, 0, 0 ), size );

		// create a 4x4 transformation matrix

		matrix.setFromMatrix3( this.rotation );
		matrix.setPosition( this.center );

		// transform ray to the local space of the OBB

		inverse.copy( matrix ).invert();
		localRay.copy( ray ).applyMatrix4( inverse );

		// perform ray <-> AABB intersection test

		if ( localRay.intersectBox( aabb, result ) ) {

			// transform the intersection point back to world space

			return result.applyMatrix4( matrix );

		} else {

			return null;

		}

	}

	/**
	* Performs a ray/OBB intersection test. Returns either true or false if
	* there is a intersection or not.
	*
	* @param {Ray} ray
	* @returns {Boolean}
	*/
	intersectsRay( ray ) {

		return this.intersectRay( ray, v1 ) !== null;

	}

	fromBox3( box3 ) {

		box3.getCenter( this.center );

		box3.getSize( this.halfSize ).multiplyScalar( 0.5 );

		this.rotation.identity();

		return this;

	}

	equals( obb ) {

		return obb.center.equals( this.center ) &&
			obb.halfSize.equals( this.halfSize ) &&
			obb.rotation.equals( this.rotation );

	}

	applyMatrix4( matrix ) {

		const e = matrix.elements;

		let sx = v1.set( e[ 0 ], e[ 1 ], e[ 2 ] ).length();
		const sy = v1.set( e[ 4 ], e[ 5 ], e[ 6 ] ).length();
		const sz = v1.set( e[ 8 ], e[ 9 ], e[ 10 ] ).length();

		const det = matrix.determinant();
		if ( det < 0 ) sx = - sx;

		rotationMatrix.setFromMatrix4( matrix );

		const invSX = 1 / sx;
		const invSY = 1 / sy;
		const invSZ = 1 / sz;

		rotationMatrix.elements[ 0 ] *= invSX;
		rotationMatrix.elements[ 1 ] *= invSX;
		rotationMatrix.elements[ 2 ] *= invSX;

		rotationMatrix.elements[ 3 ] *= invSY;
		rotationMatrix.elements[ 4 ] *= invSY;
		rotationMatrix.elements[ 5 ] *= invSY;

		rotationMatrix.elements[ 6 ] *= invSZ;
		rotationMatrix.elements[ 7 ] *= invSZ;
		rotationMatrix.elements[ 8 ] *= invSZ;

		this.rotation.multiply( rotationMatrix );

		this.halfSize.x *= sx;
		this.halfSize.y *= sy;
		this.halfSize.z *= sz;

		v1.setFromMatrixPosition( matrix );
		this.center.add( v1 );

		return this;

	}

}

const obb = new OBB();

export { OBB };