Spaces:
Running
Running
File size: 10,602 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import {
Box3,
MathUtils,
Matrix4,
Matrix3,
Ray,
Vector3
} from 'three';
// module scope helper variables
const a = {
c: null, // center
u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors
e: [] // half width
};
const b = {
c: null, // center
u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors
e: [] // half width
};
const R = [[], [], []];
const AbsR = [[], [], []];
const t = [];
const xAxis = new Vector3();
const yAxis = new Vector3();
const zAxis = new Vector3();
const v1 = new Vector3();
const size = new Vector3();
const closestPoint = new Vector3();
const rotationMatrix = new Matrix3();
const aabb = new Box3();
const matrix = new Matrix4();
const inverse = new Matrix4();
const localRay = new Ray();
// OBB
class OBB {
constructor( center = new Vector3(), halfSize = new Vector3(), rotation = new Matrix3() ) {
this.center = center;
this.halfSize = halfSize;
this.rotation = rotation;
}
set( center, halfSize, rotation ) {
this.center = center;
this.halfSize = halfSize;
this.rotation = rotation;
return this;
}
copy( obb ) {
this.center.copy( obb.center );
this.halfSize.copy( obb.halfSize );
this.rotation.copy( obb.rotation );
return this;
}
clone() {
return new this.constructor().copy( this );
}
getSize( result ) {
return result.copy( this.halfSize ).multiplyScalar( 2 );
}
/**
* Reference: Closest Point on OBB to Point in Real-Time Collision Detection
* by Christer Ericson (chapter 5.1.4)
*
* @param {Vector3} point
* @param {Vector3} result
* @returns {Vector3}
*/
clampPoint( point, result ) {
const halfSize = this.halfSize;
v1.subVectors( point, this.center );
this.rotation.extractBasis( xAxis, yAxis, zAxis );
// start at the center position of the OBB
result.copy( this.center );
// project the target onto the OBB axes and walk towards that point
const x = MathUtils.clamp( v1.dot( xAxis ), - halfSize.x, halfSize.x );
result.add( xAxis.multiplyScalar( x ) );
const y = MathUtils.clamp( v1.dot( yAxis ), - halfSize.y, halfSize.y );
result.add( yAxis.multiplyScalar( y ) );
const z = MathUtils.clamp( v1.dot( zAxis ), - halfSize.z, halfSize.z );
result.add( zAxis.multiplyScalar( z ) );
return result;
}
containsPoint( point ) {
v1.subVectors( point, this.center );
this.rotation.extractBasis( xAxis, yAxis, zAxis );
// project v1 onto each axis and check if these points lie inside the OBB
return Math.abs( v1.dot( xAxis ) ) <= this.halfSize.x &&
Math.abs( v1.dot( yAxis ) ) <= this.halfSize.y &&
Math.abs( v1.dot( zAxis ) ) <= this.halfSize.z;
}
intersectsBox3( box3 ) {
return this.intersectsOBB( obb.fromBox3( box3 ) );
}
intersectsSphere( sphere ) {
// find the point on the OBB closest to the sphere center
this.clampPoint( sphere.center, closestPoint );
// if that point is inside the sphere, the OBB and sphere intersect
return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );
}
/**
* Reference: OBB-OBB Intersection in Real-Time Collision Detection
* by Christer Ericson (chapter 4.4.1)
*
* @param {OBB} obb
* @param {Number} [epsilon=Number.EPSILON] - A small value to prevent arithmetic errors
* @returns {Boolean}
*/
intersectsOBB( obb, epsilon = Number.EPSILON ) {
// prepare data structures (the code uses the same nomenclature like the reference)
a.c = this.center;
a.e[ 0 ] = this.halfSize.x;
a.e[ 1 ] = this.halfSize.y;
a.e[ 2 ] = this.halfSize.z;
this.rotation.extractBasis( a.u[ 0 ], a.u[ 1 ], a.u[ 2 ] );
b.c = obb.center;
b.e[ 0 ] = obb.halfSize.x;
b.e[ 1 ] = obb.halfSize.y;
b.e[ 2 ] = obb.halfSize.z;
obb.rotation.extractBasis( b.u[ 0 ], b.u[ 1 ], b.u[ 2 ] );
// compute rotation matrix expressing b in a's coordinate frame
for ( let i = 0; i < 3; i ++ ) {
for ( let j = 0; j < 3; j ++ ) {
R[ i ][ j ] = a.u[ i ].dot( b.u[ j ] );
}
}
// compute translation vector
v1.subVectors( b.c, a.c );
// bring translation into a's coordinate frame
t[ 0 ] = v1.dot( a.u[ 0 ] );
t[ 1 ] = v1.dot( a.u[ 1 ] );
t[ 2 ] = v1.dot( a.u[ 2 ] );
// compute common subexpressions. Add in an epsilon term to
// counteract arithmetic errors when two edges are parallel and
// their cross product is (near) null
for ( let i = 0; i < 3; i ++ ) {
for ( let j = 0; j < 3; j ++ ) {
AbsR[ i ][ j ] = Math.abs( R[ i ][ j ] ) + epsilon;
}
}
let ra, rb;
// test axes L = A0, L = A1, L = A2
for ( let i = 0; i < 3; i ++ ) {
ra = a.e[ i ];
rb = b.e[ 0 ] * AbsR[ i ][ 0 ] + b.e[ 1 ] * AbsR[ i ][ 1 ] + b.e[ 2 ] * AbsR[ i ][ 2 ];
if ( Math.abs( t[ i ] ) > ra + rb ) return false;
}
// test axes L = B0, L = B1, L = B2
for ( let i = 0; i < 3; i ++ ) {
ra = a.e[ 0 ] * AbsR[ 0 ][ i ] + a.e[ 1 ] * AbsR[ 1 ][ i ] + a.e[ 2 ] * AbsR[ 2 ][ i ];
rb = b.e[ i ];
if ( Math.abs( t[ 0 ] * R[ 0 ][ i ] + t[ 1 ] * R[ 1 ][ i ] + t[ 2 ] * R[ 2 ][ i ] ) > ra + rb ) return false;
}
// test axis L = A0 x B0
ra = a.e[ 1 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 1 ][ 0 ];
rb = b.e[ 1 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 1 ];
if ( Math.abs( t[ 2 ] * R[ 1 ][ 0 ] - t[ 1 ] * R[ 2 ][ 0 ] ) > ra + rb ) return false;
// test axis L = A0 x B1
ra = a.e[ 1 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 1 ][ 1 ];
rb = b.e[ 0 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 0 ];
if ( Math.abs( t[ 2 ] * R[ 1 ][ 1 ] - t[ 1 ] * R[ 2 ][ 1 ] ) > ra + rb ) return false;
// test axis L = A0 x B2
ra = a.e[ 1 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 1 ][ 2 ];
rb = b.e[ 0 ] * AbsR[ 0 ][ 1 ] + b.e[ 1 ] * AbsR[ 0 ][ 0 ];
if ( Math.abs( t[ 2 ] * R[ 1 ][ 2 ] - t[ 1 ] * R[ 2 ][ 2 ] ) > ra + rb ) return false;
// test axis L = A1 x B0
ra = a.e[ 0 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 0 ][ 0 ];
rb = b.e[ 1 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 1 ];
if ( Math.abs( t[ 0 ] * R[ 2 ][ 0 ] - t[ 2 ] * R[ 0 ][ 0 ] ) > ra + rb ) return false;
// test axis L = A1 x B1
ra = a.e[ 0 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 0 ][ 1 ];
rb = b.e[ 0 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 0 ];
if ( Math.abs( t[ 0 ] * R[ 2 ][ 1 ] - t[ 2 ] * R[ 0 ][ 1 ] ) > ra + rb ) return false;
// test axis L = A1 x B2
ra = a.e[ 0 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 0 ][ 2 ];
rb = b.e[ 0 ] * AbsR[ 1 ][ 1 ] + b.e[ 1 ] * AbsR[ 1 ][ 0 ];
if ( Math.abs( t[ 0 ] * R[ 2 ][ 2 ] - t[ 2 ] * R[ 0 ][ 2 ] ) > ra + rb ) return false;
// test axis L = A2 x B0
ra = a.e[ 0 ] * AbsR[ 1 ][ 0 ] + a.e[ 1 ] * AbsR[ 0 ][ 0 ];
rb = b.e[ 1 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 1 ];
if ( Math.abs( t[ 1 ] * R[ 0 ][ 0 ] - t[ 0 ] * R[ 1 ][ 0 ] ) > ra + rb ) return false;
// test axis L = A2 x B1
ra = a.e[ 0 ] * AbsR[ 1 ][ 1 ] + a.e[ 1 ] * AbsR[ 0 ][ 1 ];
rb = b.e[ 0 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 0 ];
if ( Math.abs( t[ 1 ] * R[ 0 ][ 1 ] - t[ 0 ] * R[ 1 ][ 1 ] ) > ra + rb ) return false;
// test axis L = A2 x B2
ra = a.e[ 0 ] * AbsR[ 1 ][ 2 ] + a.e[ 1 ] * AbsR[ 0 ][ 2 ];
rb = b.e[ 0 ] * AbsR[ 2 ][ 1 ] + b.e[ 1 ] * AbsR[ 2 ][ 0 ];
if ( Math.abs( t[ 1 ] * R[ 0 ][ 2 ] - t[ 0 ] * R[ 1 ][ 2 ] ) > ra + rb ) return false;
// since no separating axis is found, the OBBs must be intersecting
return true;
}
/**
* Reference: Testing Box Against Plane in Real-Time Collision Detection
* by Christer Ericson (chapter 5.2.3)
*
* @param {Plane} plane
* @returns {Boolean}
*/
intersectsPlane( plane ) {
this.rotation.extractBasis( xAxis, yAxis, zAxis );
// compute the projection interval radius of this OBB onto L(t) = this->center + t * p.normal;
const r = this.halfSize.x * Math.abs( plane.normal.dot( xAxis ) ) +
this.halfSize.y * Math.abs( plane.normal.dot( yAxis ) ) +
this.halfSize.z * Math.abs( plane.normal.dot( zAxis ) );
// compute distance of the OBB's center from the plane
const d = plane.normal.dot( this.center ) - plane.constant;
// Intersection occurs when distance d falls within [-r,+r] interval
return Math.abs( d ) <= r;
}
/**
* Performs a ray/OBB intersection test and stores the intersection point
* to the given 3D vector. If no intersection is detected, *null* is returned.
*
* @param {Ray} ray
* @param {Vector3} result
* @return {Vector3?}
*/
intersectRay( ray, result ) {
// the idea is to perform the intersection test in the local space
// of the OBB.
this.getSize( size );
aabb.setFromCenterAndSize( v1.set( 0, 0, 0 ), size );
// create a 4x4 transformation matrix
matrix.setFromMatrix3( this.rotation );
matrix.setPosition( this.center );
// transform ray to the local space of the OBB
inverse.copy( matrix ).invert();
localRay.copy( ray ).applyMatrix4( inverse );
// perform ray <-> AABB intersection test
if ( localRay.intersectBox( aabb, result ) ) {
// transform the intersection point back to world space
return result.applyMatrix4( matrix );
} else {
return null;
}
}
/**
* Performs a ray/OBB intersection test. Returns either true or false if
* there is a intersection or not.
*
* @param {Ray} ray
* @returns {Boolean}
*/
intersectsRay( ray ) {
return this.intersectRay( ray, v1 ) !== null;
}
fromBox3( box3 ) {
box3.getCenter( this.center );
box3.getSize( this.halfSize ).multiplyScalar( 0.5 );
this.rotation.identity();
return this;
}
equals( obb ) {
return obb.center.equals( this.center ) &&
obb.halfSize.equals( this.halfSize ) &&
obb.rotation.equals( this.rotation );
}
applyMatrix4( matrix ) {
const e = matrix.elements;
let sx = v1.set( e[ 0 ], e[ 1 ], e[ 2 ] ).length();
const sy = v1.set( e[ 4 ], e[ 5 ], e[ 6 ] ).length();
const sz = v1.set( e[ 8 ], e[ 9 ], e[ 10 ] ).length();
const det = matrix.determinant();
if ( det < 0 ) sx = - sx;
rotationMatrix.setFromMatrix4( matrix );
const invSX = 1 / sx;
const invSY = 1 / sy;
const invSZ = 1 / sz;
rotationMatrix.elements[ 0 ] *= invSX;
rotationMatrix.elements[ 1 ] *= invSX;
rotationMatrix.elements[ 2 ] *= invSX;
rotationMatrix.elements[ 3 ] *= invSY;
rotationMatrix.elements[ 4 ] *= invSY;
rotationMatrix.elements[ 5 ] *= invSY;
rotationMatrix.elements[ 6 ] *= invSZ;
rotationMatrix.elements[ 7 ] *= invSZ;
rotationMatrix.elements[ 8 ] *= invSZ;
this.rotation.multiply( rotationMatrix );
this.halfSize.x *= sx;
this.halfSize.y *= sy;
this.halfSize.z *= sz;
v1.setFromMatrixPosition( matrix );
this.center.add( v1 );
return this;
}
}
const obb = new OBB();
export { OBB };
|