File size: 13,577 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import {
	Line3,
	Mesh,
	Plane,
	Vector3
} from 'three';
import { ConvexGeometry } from '../geometries/ConvexGeometry.js';

/**
 * @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
 *
 * Usage:
 *
 * Use the function prepareBreakableObject to prepare a Mesh object to be broken.
 *
 * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
 *
 * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
 *
 * Requisites for the object:
 *
 *  - Mesh object must have a buffer geometry and a material
 *
 *  - Vertex normals must be planar (not smoothed)
 *
 *  - The geometry must be convex (this is not checked in the library). You can create convex
 *  geometries with ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
 *  can also be used.
 *
 * Note: This lib adds member variables to object's userData member (see prepareBreakableObject function)
 * Use with caution and read the code when using with other libs.
 *
 * @param {double} minSizeForBreak Min size a debris can have to break.
 * @param {double} smallDelta Max distance to consider that a point belongs to a plane.
 *
*/

const _v1 = new Vector3();

class ConvexObjectBreaker {

	constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) {

		this.minSizeForBreak = minSizeForBreak;
		this.smallDelta = smallDelta;

		this.tempLine1 = new Line3();
		this.tempPlane1 = new Plane();
		this.tempPlane2 = new Plane();
		this.tempPlane_Cut = new Plane();
		this.tempCM1 = new Vector3();
		this.tempCM2 = new Vector3();
		this.tempVector3 = new Vector3();
		this.tempVector3_2 = new Vector3();
		this.tempVector3_3 = new Vector3();
		this.tempVector3_P0 = new Vector3();
		this.tempVector3_P1 = new Vector3();
		this.tempVector3_P2 = new Vector3();
		this.tempVector3_N0 = new Vector3();
		this.tempVector3_N1 = new Vector3();
		this.tempVector3_AB = new Vector3();
		this.tempVector3_CB = new Vector3();
		this.tempResultObjects = { object1: null, object2: null };

		this.segments = [];
		const n = 30 * 30;
		for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false;

	}

	prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {

		// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex.
		// Its material property is propagated to its children (sub-pieces)
		// mass must be > 0

		const userData = object.userData;
		userData.mass = mass;
		userData.velocity = velocity.clone();
		userData.angularVelocity = angularVelocity.clone();
		userData.breakable = breakable;

	}

	/*
	 * @param {int} maxRadialIterations Iterations for radial cuts.
	 * @param {int} maxRandomIterations Max random iterations for not-radial cuts
	 *
	 * Returns the array of pieces
	 */
	subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {

		const debris = [];

		const tempPlane1 = this.tempPlane1;
		const tempPlane2 = this.tempPlane2;

		this.tempVector3.addVectors( pointOfImpact, normal );
		tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );

		const maxTotalIterations = maxRandomIterations + maxRadialIterations;

		const scope = this;

		function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {

			if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {

				debris.push( subObject );

				return;

			}

			let angle = Math.PI;

			if ( numIterations === 0 ) {

				tempPlane2.normal.copy( tempPlane1.normal );
				tempPlane2.constant = tempPlane1.constant;

			} else {

				if ( numIterations <= maxRadialIterations ) {

					angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;

					// Rotate tempPlane2 at impact point around normal axis and the angle
					scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
					tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );

				} else {

					angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;

					// Rotate tempPlane2 at object position around normal axis and the angle
					scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
					scope.tempVector3_3.copy( normal ).add( subObject.position );
					tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );

				}

			}

			// Perform the cut
			scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );

			const obj1 = scope.tempResultObjects.object1;
			const obj2 = scope.tempResultObjects.object2;

			if ( obj1 ) {

				subdivideRadial( obj1, startAngle, angle, numIterations + 1 );

			}

			if ( obj2 ) {

				subdivideRadial( obj2, angle, endAngle, numIterations + 1 );

			}

		}

		subdivideRadial( object, 0, 2 * Math.PI, 0 );

		return debris;

	}

	cutByPlane( object, plane, output ) {

		// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
		// object2 can be null if the plane doesn't cut the object.
		// object1 can be null only in case of internal error
		// Returned value is number of pieces, 0 for error.

		const geometry = object.geometry;
		const coords = geometry.attributes.position.array;
		const normals = geometry.attributes.normal.array;

		const numPoints = coords.length / 3;
		let numFaces = numPoints / 3;

		let indices = geometry.getIndex();

		if ( indices ) {

			indices = indices.array;
			numFaces = indices.length / 3;

		}

		function getVertexIndex( faceIdx, vert ) {

			// vert = 0, 1 or 2.

			const idx = faceIdx * 3 + vert;

			return indices ? indices[ idx ] : idx;

		}

		const points1 = [];
		const points2 = [];

		const delta = this.smallDelta;

		// Reset segments mark
		const numPointPairs = numPoints * numPoints;
		for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;

		const p0 = this.tempVector3_P0;
		const p1 = this.tempVector3_P1;
		const n0 = this.tempVector3_N0;
		const n1 = this.tempVector3_N1;

		// Iterate through the faces to mark edges shared by coplanar faces
		for ( let i = 0; i < numFaces - 1; i ++ ) {

			const a1 = getVertexIndex( i, 0 );
			const b1 = getVertexIndex( i, 1 );
			const c1 = getVertexIndex( i, 2 );

			// Assuming all 3 vertices have the same normal
			n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );

			for ( let j = i + 1; j < numFaces; j ++ ) {

				const a2 = getVertexIndex( j, 0 );
				const b2 = getVertexIndex( j, 1 );
				const c2 = getVertexIndex( j, 2 );

				// Assuming all 3 vertices have the same normal
				n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );

				const coplanar = 1 - n0.dot( n1 ) < delta;

				if ( coplanar ) {

					if ( a1 === a2 || a1 === b2 || a1 === c2 ) {

						if ( b1 === a2 || b1 === b2 || b1 === c2 ) {

							this.segments[ a1 * numPoints + b1 ] = true;
							this.segments[ b1 * numPoints + a1 ] = true;

						}	else {

							this.segments[ c1 * numPoints + a1 ] = true;
							this.segments[ a1 * numPoints + c1 ] = true;

						}

					}	else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {

						this.segments[ c1 * numPoints + b1 ] = true;
						this.segments[ b1 * numPoints + c1 ] = true;

					}

				}

			}

		}

		// Transform the plane to object local space
		const localPlane = this.tempPlane_Cut;
		object.updateMatrix();
		ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );

		// Iterate through the faces adding points to both pieces
		for ( let i = 0; i < numFaces; i ++ ) {

			const va = getVertexIndex( i, 0 );
			const vb = getVertexIndex( i, 1 );
			const vc = getVertexIndex( i, 2 );

			for ( let segment = 0; segment < 3; segment ++ ) {

				const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc );
				const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va );

				const segmentState = this.segments[ i0 * numPoints + i1 ];

				if ( segmentState ) continue; // The segment already has been processed in another face

				// Mark segment as processed (also inverted segment)
				this.segments[ i0 * numPoints + i1 ] = true;
				this.segments[ i1 * numPoints + i0 ] = true;

				p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );
				p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] );

				// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
				let mark0 = 0;

				let d = localPlane.distanceToPoint( p0 );

				if ( d > delta ) {

					mark0 = 2;
					points2.push( p0.clone() );

				} else if ( d < - delta ) {

					mark0 = 1;
					points1.push( p0.clone() );

				} else {

					mark0 = 3;
					points1.push( p0.clone() );
					points2.push( p0.clone() );

				}

				// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
				let mark1 = 0;

				d = localPlane.distanceToPoint( p1 );

				if ( d > delta ) {

					mark1 = 2;
					points2.push( p1.clone() );

				} else if ( d < - delta ) {

					mark1 = 1;
					points1.push( p1.clone() );

				}	else {

					mark1 = 3;
					points1.push( p1.clone() );
					points2.push( p1.clone() );

				}

				if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {

					// Intersection of segment with the plane

					this.tempLine1.start.copy( p0 );
					this.tempLine1.end.copy( p1 );

					let intersection = new Vector3();
					intersection = localPlane.intersectLine( this.tempLine1, intersection );

					if ( intersection === null ) {

						// Shouldn't happen
						console.error( 'Internal error: segment does not intersect plane.' );
						output.segmentedObject1 = null;
						output.segmentedObject2 = null;
						return 0;

					}

					points1.push( intersection );
					points2.push( intersection.clone() );

				}

			}

		}

		// Calculate debris mass (very fast and imprecise):
		const newMass = object.userData.mass * 0.5;

		// Calculate debris Center of Mass (again fast and imprecise)
		this.tempCM1.set( 0, 0, 0 );
		let radius1 = 0;
		const numPoints1 = points1.length;

		if ( numPoints1 > 0 ) {

			for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );

			this.tempCM1.divideScalar( numPoints1 );
			for ( let i = 0; i < numPoints1; i ++ ) {

				const p = points1[ i ];
				p.sub( this.tempCM1 );
				radius1 = Math.max( radius1, p.x, p.y, p.z );

			}

			this.tempCM1.add( object.position );

		}

		this.tempCM2.set( 0, 0, 0 );
		let radius2 = 0;
		const numPoints2 = points2.length;
		if ( numPoints2 > 0 ) {

			for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );

			this.tempCM2.divideScalar( numPoints2 );
			for ( let i = 0; i < numPoints2; i ++ ) {

				const p = points2[ i ];
				p.sub( this.tempCM2 );
				radius2 = Math.max( radius2, p.x, p.y, p.z );

			}

			this.tempCM2.add( object.position );

		}

		let object1 = null;
		let object2 = null;

		let numObjects = 0;

		if ( numPoints1 > 4 ) {

			object1 = new Mesh( new ConvexGeometry( points1 ), object.material );
			object1.position.copy( this.tempCM1 );
			object1.quaternion.copy( object.quaternion );

			this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );

			numObjects ++;

		}

		if ( numPoints2 > 4 ) {

			object2 = new Mesh( new ConvexGeometry( points2 ), object.material );
			object2.position.copy( this.tempCM2 );
			object2.quaternion.copy( object.quaternion );

			this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );

			numObjects ++;

		}

		output.object1 = object1;
		output.object2 = object2;

		return numObjects;

	}

	static transformFreeVector( v, m ) {

		// input:
		// vector interpreted as a free vector
		// THREE.Matrix4 orthogonal matrix (matrix without scale)

		const x = v.x, y = v.y, z = v.z;
		const e = m.elements;

		v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
		v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
		v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;

		return v;

	}

	static transformFreeVectorInverse( v, m ) {

		// input:
		// vector interpreted as a free vector
		// THREE.Matrix4 orthogonal matrix (matrix without scale)

		const x = v.x, y = v.y, z = v.z;
		const e = m.elements;

		v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
		v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
		v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;

		return v;

	}

	static transformTiedVectorInverse( v, m ) {

		// input:
		// vector interpreted as a tied (ordinary) vector
		// THREE.Matrix4 orthogonal matrix (matrix without scale)

		const x = v.x, y = v.y, z = v.z;
		const e = m.elements;

		v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
		v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
		v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];

		return v;

	}

	static transformPlaneToLocalSpace( plane, m, resultPlane ) {

		resultPlane.normal.copy( plane.normal );
		resultPlane.constant = plane.constant;

		const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );

		ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );

		// recalculate constant (like in setFromNormalAndCoplanarPoint)
		resultPlane.constant = - referencePoint.dot( resultPlane.normal );

	}

}

export { ConvexObjectBreaker };