Spaces:
Running
Running
File size: 13,577 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import {
Line3,
Mesh,
Plane,
Vector3
} from 'three';
import { ConvexGeometry } from '../geometries/ConvexGeometry.js';
/**
* @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
*
* Usage:
*
* Use the function prepareBreakableObject to prepare a Mesh object to be broken.
*
* Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
*
* Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
*
* Requisites for the object:
*
* - Mesh object must have a buffer geometry and a material
*
* - Vertex normals must be planar (not smoothed)
*
* - The geometry must be convex (this is not checked in the library). You can create convex
* geometries with ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
* can also be used.
*
* Note: This lib adds member variables to object's userData member (see prepareBreakableObject function)
* Use with caution and read the code when using with other libs.
*
* @param {double} minSizeForBreak Min size a debris can have to break.
* @param {double} smallDelta Max distance to consider that a point belongs to a plane.
*
*/
const _v1 = new Vector3();
class ConvexObjectBreaker {
constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) {
this.minSizeForBreak = minSizeForBreak;
this.smallDelta = smallDelta;
this.tempLine1 = new Line3();
this.tempPlane1 = new Plane();
this.tempPlane2 = new Plane();
this.tempPlane_Cut = new Plane();
this.tempCM1 = new Vector3();
this.tempCM2 = new Vector3();
this.tempVector3 = new Vector3();
this.tempVector3_2 = new Vector3();
this.tempVector3_3 = new Vector3();
this.tempVector3_P0 = new Vector3();
this.tempVector3_P1 = new Vector3();
this.tempVector3_P2 = new Vector3();
this.tempVector3_N0 = new Vector3();
this.tempVector3_N1 = new Vector3();
this.tempVector3_AB = new Vector3();
this.tempVector3_CB = new Vector3();
this.tempResultObjects = { object1: null, object2: null };
this.segments = [];
const n = 30 * 30;
for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false;
}
prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {
// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex.
// Its material property is propagated to its children (sub-pieces)
// mass must be > 0
const userData = object.userData;
userData.mass = mass;
userData.velocity = velocity.clone();
userData.angularVelocity = angularVelocity.clone();
userData.breakable = breakable;
}
/*
* @param {int} maxRadialIterations Iterations for radial cuts.
* @param {int} maxRandomIterations Max random iterations for not-radial cuts
*
* Returns the array of pieces
*/
subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {
const debris = [];
const tempPlane1 = this.tempPlane1;
const tempPlane2 = this.tempPlane2;
this.tempVector3.addVectors( pointOfImpact, normal );
tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );
const maxTotalIterations = maxRandomIterations + maxRadialIterations;
const scope = this;
function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
debris.push( subObject );
return;
}
let angle = Math.PI;
if ( numIterations === 0 ) {
tempPlane2.normal.copy( tempPlane1.normal );
tempPlane2.constant = tempPlane1.constant;
} else {
if ( numIterations <= maxRadialIterations ) {
angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;
// Rotate tempPlane2 at impact point around normal axis and the angle
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
} else {
angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;
// Rotate tempPlane2 at object position around normal axis and the angle
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
scope.tempVector3_3.copy( normal ).add( subObject.position );
tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
}
}
// Perform the cut
scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
const obj1 = scope.tempResultObjects.object1;
const obj2 = scope.tempResultObjects.object2;
if ( obj1 ) {
subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
}
if ( obj2 ) {
subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
}
}
subdivideRadial( object, 0, 2 * Math.PI, 0 );
return debris;
}
cutByPlane( object, plane, output ) {
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
// object2 can be null if the plane doesn't cut the object.
// object1 can be null only in case of internal error
// Returned value is number of pieces, 0 for error.
const geometry = object.geometry;
const coords = geometry.attributes.position.array;
const normals = geometry.attributes.normal.array;
const numPoints = coords.length / 3;
let numFaces = numPoints / 3;
let indices = geometry.getIndex();
if ( indices ) {
indices = indices.array;
numFaces = indices.length / 3;
}
function getVertexIndex( faceIdx, vert ) {
// vert = 0, 1 or 2.
const idx = faceIdx * 3 + vert;
return indices ? indices[ idx ] : idx;
}
const points1 = [];
const points2 = [];
const delta = this.smallDelta;
// Reset segments mark
const numPointPairs = numPoints * numPoints;
for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;
const p0 = this.tempVector3_P0;
const p1 = this.tempVector3_P1;
const n0 = this.tempVector3_N0;
const n1 = this.tempVector3_N1;
// Iterate through the faces to mark edges shared by coplanar faces
for ( let i = 0; i < numFaces - 1; i ++ ) {
const a1 = getVertexIndex( i, 0 );
const b1 = getVertexIndex( i, 1 );
const c1 = getVertexIndex( i, 2 );
// Assuming all 3 vertices have the same normal
n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );
for ( let j = i + 1; j < numFaces; j ++ ) {
const a2 = getVertexIndex( j, 0 );
const b2 = getVertexIndex( j, 1 );
const c2 = getVertexIndex( j, 2 );
// Assuming all 3 vertices have the same normal
n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );
const coplanar = 1 - n0.dot( n1 ) < delta;
if ( coplanar ) {
if ( a1 === a2 || a1 === b2 || a1 === c2 ) {
if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ a1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + a1 ] = true;
} else {
this.segments[ c1 * numPoints + a1 ] = true;
this.segments[ a1 * numPoints + c1 ] = true;
}
} else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
this.segments[ c1 * numPoints + b1 ] = true;
this.segments[ b1 * numPoints + c1 ] = true;
}
}
}
}
// Transform the plane to object local space
const localPlane = this.tempPlane_Cut;
object.updateMatrix();
ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );
// Iterate through the faces adding points to both pieces
for ( let i = 0; i < numFaces; i ++ ) {
const va = getVertexIndex( i, 0 );
const vb = getVertexIndex( i, 1 );
const vc = getVertexIndex( i, 2 );
for ( let segment = 0; segment < 3; segment ++ ) {
const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc );
const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va );
const segmentState = this.segments[ i0 * numPoints + i1 ];
if ( segmentState ) continue; // The segment already has been processed in another face
// Mark segment as processed (also inverted segment)
this.segments[ i0 * numPoints + i1 ] = true;
this.segments[ i1 * numPoints + i0 ] = true;
p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );
p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] );
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark0 = 0;
let d = localPlane.distanceToPoint( p0 );
if ( d > delta ) {
mark0 = 2;
points2.push( p0.clone() );
} else if ( d < - delta ) {
mark0 = 1;
points1.push( p0.clone() );
} else {
mark0 = 3;
points1.push( p0.clone() );
points2.push( p0.clone() );
}
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point
let mark1 = 0;
d = localPlane.distanceToPoint( p1 );
if ( d > delta ) {
mark1 = 2;
points2.push( p1.clone() );
} else if ( d < - delta ) {
mark1 = 1;
points1.push( p1.clone() );
} else {
mark1 = 3;
points1.push( p1.clone() );
points2.push( p1.clone() );
}
if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {
// Intersection of segment with the plane
this.tempLine1.start.copy( p0 );
this.tempLine1.end.copy( p1 );
let intersection = new Vector3();
intersection = localPlane.intersectLine( this.tempLine1, intersection );
if ( intersection === null ) {
// Shouldn't happen
console.error( 'Internal error: segment does not intersect plane.' );
output.segmentedObject1 = null;
output.segmentedObject2 = null;
return 0;
}
points1.push( intersection );
points2.push( intersection.clone() );
}
}
}
// Calculate debris mass (very fast and imprecise):
const newMass = object.userData.mass * 0.5;
// Calculate debris Center of Mass (again fast and imprecise)
this.tempCM1.set( 0, 0, 0 );
let radius1 = 0;
const numPoints1 = points1.length;
if ( numPoints1 > 0 ) {
for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );
this.tempCM1.divideScalar( numPoints1 );
for ( let i = 0; i < numPoints1; i ++ ) {
const p = points1[ i ];
p.sub( this.tempCM1 );
radius1 = Math.max( radius1, p.x, p.y, p.z );
}
this.tempCM1.add( object.position );
}
this.tempCM2.set( 0, 0, 0 );
let radius2 = 0;
const numPoints2 = points2.length;
if ( numPoints2 > 0 ) {
for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );
this.tempCM2.divideScalar( numPoints2 );
for ( let i = 0; i < numPoints2; i ++ ) {
const p = points2[ i ];
p.sub( this.tempCM2 );
radius2 = Math.max( radius2, p.x, p.y, p.z );
}
this.tempCM2.add( object.position );
}
let object1 = null;
let object2 = null;
let numObjects = 0;
if ( numPoints1 > 4 ) {
object1 = new Mesh( new ConvexGeometry( points1 ), object.material );
object1.position.copy( this.tempCM1 );
object1.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );
numObjects ++;
}
if ( numPoints2 > 4 ) {
object2 = new Mesh( new ConvexGeometry( points2 ), object.material );
object2.position.copy( this.tempCM2 );
object2.quaternion.copy( object.quaternion );
this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );
numObjects ++;
}
output.object1 = object1;
output.object2 = object2;
return numObjects;
}
static transformFreeVector( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
return v;
}
static transformFreeVectorInverse( v, m ) {
// input:
// vector interpreted as a free vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;
return v;
}
static transformTiedVectorInverse( v, m ) {
// input:
// vector interpreted as a tied (ordinary) vector
// THREE.Matrix4 orthogonal matrix (matrix without scale)
const x = v.x, y = v.y, z = v.z;
const e = m.elements;
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];
return v;
}
static transformPlaneToLocalSpace( plane, m, resultPlane ) {
resultPlane.normal.copy( plane.normal );
resultPlane.constant = plane.constant;
const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );
ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );
// recalculate constant (like in setFromNormalAndCoplanarPoint)
resultPlane.constant = - referencePoint.dot( resultPlane.normal );
}
}
export { ConvexObjectBreaker };
|