Spaces:
Running
Running
File size: 11,486 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
import {
ClampToEdgeWrapping,
DataTexture,
FloatType,
NearestFilter,
RGBAFormat,
ShaderMaterial,
WebGLRenderTarget
} from 'three';
import { FullScreenQuad } from '../postprocessing/Pass.js';
/**
* GPUComputationRenderer, based on SimulationRenderer by zz85
*
* The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
* for each compute element (texel)
*
* Each variable has a fragment shader that defines the computation made to obtain the variable in question.
* You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
* (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
*
* The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
* as inputs to render the textures of the next frame.
*
* The render targets of the variables can be used as input textures for your visualization shaders.
*
* Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
* a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
*
* The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
* #DEFINE resolution vec2( 1024.0, 1024.0 )
*
* -------------
*
* Basic use:
*
* // Initialization...
*
* // Create computation renderer
* const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
*
* // Create initial state float textures
* const pos0 = gpuCompute.createTexture();
* const vel0 = gpuCompute.createTexture();
* // and fill in here the texture data...
*
* // Add texture variables
* const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, vel0 );
* const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, pos0 );
*
* // Add variable dependencies
* gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
* gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
*
* // Add custom uniforms
* velVar.material.uniforms.time = { value: 0.0 };
*
* // Check for completeness
* const error = gpuCompute.init();
* if ( error !== null ) {
* console.error( error );
* }
*
*
* // In each frame...
*
* // Compute!
* gpuCompute.compute();
*
* // Update texture uniforms in your visualization materials with the gpu renderer output
* myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
*
* // Do your rendering
* renderer.render( myScene, myCamera );
*
* -------------
*
* Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
* Note that the shaders can have multiple input textures.
*
* const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
* const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
*
* const inputTexture = gpuCompute.createTexture();
*
* // Fill in here inputTexture...
*
* myFilter1.uniforms.theTexture.value = inputTexture;
*
* const myRenderTarget = gpuCompute.createRenderTarget();
* myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
*
* const outputRenderTarget = gpuCompute.createRenderTarget();
*
* // Now use the output texture where you want:
* myMaterial.uniforms.map.value = outputRenderTarget.texture;
*
* // And compute each frame, before rendering to screen:
* gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
* gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
*
*
*
* @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
* @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
* @param {WebGLRenderer} renderer The renderer
*/
class GPUComputationRenderer {
constructor( sizeX, sizeY, renderer ) {
this.variables = [];
this.currentTextureIndex = 0;
let dataType = FloatType;
const passThruUniforms = {
passThruTexture: { value: null }
};
const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
const quad = new FullScreenQuad( passThruShader );
this.setDataType = function ( type ) {
dataType = type;
return this;
};
this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
const material = this.createShaderMaterial( computeFragmentShader );
const variable = {
name: variableName,
initialValueTexture: initialValueTexture,
material: material,
dependencies: null,
renderTargets: [],
wrapS: null,
wrapT: null,
minFilter: NearestFilter,
magFilter: NearestFilter
};
this.variables.push( variable );
return variable;
};
this.setVariableDependencies = function ( variable, dependencies ) {
variable.dependencies = dependencies;
};
this.init = function () {
if ( renderer.capabilities.maxVertexTextures === 0 ) {
return 'No support for vertex shader textures.';
}
for ( let i = 0; i < this.variables.length; i ++ ) {
const variable = this.variables[ i ];
// Creates rendertargets and initialize them with input texture
variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );
// Adds dependencies uniforms to the ShaderMaterial
const material = variable.material;
const uniforms = material.uniforms;
if ( variable.dependencies !== null ) {
for ( let d = 0; d < variable.dependencies.length; d ++ ) {
const depVar = variable.dependencies[ d ];
if ( depVar.name !== variable.name ) {
// Checks if variable exists
let found = false;
for ( let j = 0; j < this.variables.length; j ++ ) {
if ( depVar.name === this.variables[ j ].name ) {
found = true;
break;
}
}
if ( ! found ) {
return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;
}
}
uniforms[ depVar.name ] = { value: null };
material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;
}
}
}
this.currentTextureIndex = 0;
return null;
};
this.compute = function () {
const currentTextureIndex = this.currentTextureIndex;
const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
for ( let i = 0, il = this.variables.length; i < il; i ++ ) {
const variable = this.variables[ i ];
// Sets texture dependencies uniforms
if ( variable.dependencies !== null ) {
const uniforms = variable.material.uniforms;
for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
const depVar = variable.dependencies[ d ];
uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
}
}
// Performs the computation for this variable
this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
}
this.currentTextureIndex = nextTextureIndex;
};
this.getCurrentRenderTarget = function ( variable ) {
return variable.renderTargets[ this.currentTextureIndex ];
};
this.getAlternateRenderTarget = function ( variable ) {
return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
};
this.dispose = function () {
quad.dispose();
const variables = this.variables;
for ( let i = 0; i < variables.length; i ++ ) {
const variable = variables[ i ];
if ( variable.initialValueTexture ) variable.initialValueTexture.dispose();
const renderTargets = variable.renderTargets;
for ( let j = 0; j < renderTargets.length; j ++ ) {
const renderTarget = renderTargets[ j ];
renderTarget.dispose();
}
}
};
function addResolutionDefine( materialShader ) {
materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';
}
this.addResolutionDefine = addResolutionDefine;
// The following functions can be used to compute things manually
function createShaderMaterial( computeFragmentShader, uniforms ) {
uniforms = uniforms || {};
const material = new ShaderMaterial( {
name: 'GPUComputationShader',
uniforms: uniforms,
vertexShader: getPassThroughVertexShader(),
fragmentShader: computeFragmentShader
} );
addResolutionDefine( material );
return material;
}
this.createShaderMaterial = createShaderMaterial;
this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
sizeXTexture = sizeXTexture || sizeX;
sizeYTexture = sizeYTexture || sizeY;
wrapS = wrapS || ClampToEdgeWrapping;
wrapT = wrapT || ClampToEdgeWrapping;
minFilter = minFilter || NearestFilter;
magFilter = magFilter || NearestFilter;
const renderTarget = new WebGLRenderTarget( sizeXTexture, sizeYTexture, {
wrapS: wrapS,
wrapT: wrapT,
minFilter: minFilter,
magFilter: magFilter,
format: RGBAFormat,
type: dataType,
depthBuffer: false
} );
return renderTarget;
};
this.createTexture = function () {
const data = new Float32Array( sizeX * sizeY * 4 );
const texture = new DataTexture( data, sizeX, sizeY, RGBAFormat, FloatType );
texture.needsUpdate = true;
return texture;
};
this.renderTexture = function ( input, output ) {
// Takes a texture, and render out in rendertarget
// input = Texture
// output = RenderTarget
passThruUniforms.passThruTexture.value = input;
this.doRenderTarget( passThruShader, output );
passThruUniforms.passThruTexture.value = null;
};
this.doRenderTarget = function ( material, output ) {
const currentRenderTarget = renderer.getRenderTarget();
const currentXrEnabled = renderer.xr.enabled;
const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
renderer.xr.enabled = false; // Avoid camera modification
renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows
quad.material = material;
renderer.setRenderTarget( output );
quad.render( renderer );
quad.material = passThruShader;
renderer.xr.enabled = currentXrEnabled;
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
renderer.setRenderTarget( currentRenderTarget );
};
// Shaders
function getPassThroughVertexShader() {
return 'void main() {\n' +
'\n' +
' gl_Position = vec4( position, 1.0 );\n' +
'\n' +
'}\n';
}
function getPassThroughFragmentShader() {
return 'uniform sampler2D passThruTexture;\n' +
'\n' +
'void main() {\n' +
'\n' +
' vec2 uv = gl_FragCoord.xy / resolution.xy;\n' +
'\n' +
' gl_FragColor = texture2D( passThruTexture, uv );\n' +
'\n' +
'}\n';
}
}
}
export { GPUComputationRenderer };
|