Spaces:
Running
Running
File size: 11,338 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import { DoubleSide, FloatType, HalfFloatType, Mesh, MeshBasicMaterial, MeshPhongMaterial, PlaneGeometry, Scene, WebGLRenderTarget } from 'three';
import { potpack } from '../libs/potpack.module.js';
/**
* Progressive Light Map Accumulator, by [zalo](https://github.com/zalo/)
*
* To use, simply construct a `ProgressiveLightMap` object,
* `plmap.addObjectsToLightMap(object)` an array of semi-static
* objects and lights to the class once, and then call
* `plmap.update(camera)` every frame to begin accumulating
* lighting samples.
*
* This should begin accumulating lightmaps which apply to
* your objects, so you can start jittering lighting to achieve
* the texture-space effect you're looking for.
*
* @param {WebGLRenderer} renderer An instance of WebGLRenderer.
* @param {number} res The side-long dimension of you total lightmap.
*/
class ProgressiveLightMap {
constructor( renderer, res = 1024 ) {
this.renderer = renderer;
this.res = res;
this.lightMapContainers = [];
this.scene = new Scene();
this.buffer1Active = false;
this.firstUpdate = true;
this.labelMesh = null;
this.blurringPlane = null;
// Create the Progressive LightMap Texture
const format = /(Android|iPad|iPhone|iPod)/g.test( navigator.userAgent ) ? HalfFloatType : FloatType;
this.progressiveLightMap1 = new WebGLRenderTarget( this.res, this.res, { type: format } );
this.progressiveLightMap2 = new WebGLRenderTarget( this.res, this.res, { type: format } );
this.progressiveLightMap2.texture.channel = 1;
// Inject some spicy new logic into a standard phong material
this.uvMat = new MeshPhongMaterial();
this.uvMat.uniforms = {};
this.uvMat.onBeforeCompile = ( shader ) => {
// Vertex Shader: Set Vertex Positions to the Unwrapped UV Positions
shader.vertexShader =
'attribute vec2 uv1;\n' +
'#define USE_LIGHTMAP\n' +
'#define LIGHTMAP_UV uv1\n' +
shader.vertexShader.slice( 0, - 1 ) +
' gl_Position = vec4((LIGHTMAP_UV - 0.5) * 2.0, 1.0, 1.0); }';
// Fragment Shader: Set Pixels to average in the Previous frame's Shadows
const bodyStart = shader.fragmentShader.indexOf( 'void main() {' );
shader.fragmentShader =
'#define USE_LIGHTMAP\n' +
shader.fragmentShader.slice( 0, bodyStart ) +
' uniform sampler2D previousShadowMap;\n uniform float averagingWindow;\n' +
shader.fragmentShader.slice( bodyStart - 1, - 1 ) +
`\nvec3 texelOld = texture2D(previousShadowMap, vLightMapUv).rgb;
gl_FragColor.rgb = mix(texelOld, gl_FragColor.rgb, 1.0/averagingWindow);
}`;
// Set the Previous Frame's Texture Buffer and Averaging Window
shader.uniforms.previousShadowMap = { value: this.progressiveLightMap1.texture };
shader.uniforms.averagingWindow = { value: 100 };
this.uvMat.uniforms = shader.uniforms;
// Set the new Shader to this
this.uvMat.userData.shader = shader;
};
}
/**
* Sets these objects' materials' lightmaps and modifies their uv1's.
* @param {Object3D} objects An array of objects and lights to set up your lightmap.
*/
addObjectsToLightMap( objects ) {
// Prepare list of UV bounding boxes for packing later...
this.uv_boxes = []; const padding = 3 / this.res;
for ( let ob = 0; ob < objects.length; ob ++ ) {
const object = objects[ ob ];
// If this object is a light, simply add it to the internal scene
if ( object.isLight ) {
this.scene.attach( object ); continue;
}
if ( object.geometry.hasAttribute( 'uv' ) === false ) {
console.warn( 'THREE.ProgressiveLightMap: All lightmap objects need uvs.' ); continue;
}
if ( this.blurringPlane === null ) {
this._initializeBlurPlane( this.res, this.progressiveLightMap1 );
}
// Apply the lightmap to the object
object.material.lightMap = this.progressiveLightMap2.texture;
object.material.dithering = true;
object.castShadow = true;
object.receiveShadow = true;
object.renderOrder = 1000 + ob;
// Prepare UV boxes for potpack
// TODO: Size these by object surface area
this.uv_boxes.push( { w: 1 + ( padding * 2 ),
h: 1 + ( padding * 2 ), index: ob } );
this.lightMapContainers.push( { basicMat: object.material, object: object } );
}
// Pack the objects' lightmap UVs into the same global space
const dimensions = potpack( this.uv_boxes );
this.uv_boxes.forEach( ( box ) => {
const uv1 = objects[ box.index ].geometry.getAttribute( 'uv' ).clone();
for ( let i = 0; i < uv1.array.length; i += uv1.itemSize ) {
uv1.array[ i ] = ( uv1.array[ i ] + box.x + padding ) / dimensions.w;
uv1.array[ i + 1 ] = ( uv1.array[ i + 1 ] + box.y + padding ) / dimensions.h;
}
objects[ box.index ].geometry.setAttribute( 'uv1', uv1 );
objects[ box.index ].geometry.getAttribute( 'uv1' ).needsUpdate = true;
} );
}
/**
* This function renders each mesh one at a time into their respective surface maps
* @param {Camera} camera Standard Rendering Camera
* @param {number} blendWindow When >1, samples will accumulate over time.
* @param {boolean} blurEdges Whether to fix UV Edges via blurring
*/
update( camera, blendWindow = 100, blurEdges = true ) {
if ( this.blurringPlane === null ) {
return;
}
// Store the original Render Target
const oldTarget = this.renderer.getRenderTarget();
// The blurring plane applies blur to the seams of the lightmap
this.blurringPlane.visible = blurEdges;
// Steal the Object3D from the real world to our special dimension
for ( let l = 0; l < this.lightMapContainers.length; l ++ ) {
this.lightMapContainers[ l ].object.oldScene =
this.lightMapContainers[ l ].object.parent;
this.scene.attach( this.lightMapContainers[ l ].object );
}
// Initialize everything
if ( this.firstUpdate === true ) {
this.renderer.compile( this.scene, camera );
this.firstUpdate = false;
}
// Set each object's material to the UV Unwrapped Surface Mapping Version
for ( let l = 0; l < this.lightMapContainers.length; l ++ ) {
this.uvMat.uniforms.averagingWindow = { value: blendWindow };
this.lightMapContainers[ l ].object.material = this.uvMat;
this.lightMapContainers[ l ].object.oldFrustumCulled =
this.lightMapContainers[ l ].object.frustumCulled;
this.lightMapContainers[ l ].object.frustumCulled = false;
}
// Ping-pong two surface buffers for reading/writing
const activeMap = this.buffer1Active ? this.progressiveLightMap1 : this.progressiveLightMap2;
const inactiveMap = this.buffer1Active ? this.progressiveLightMap2 : this.progressiveLightMap1;
// Render the object's surface maps
this.renderer.setRenderTarget( activeMap );
this.uvMat.uniforms.previousShadowMap = { value: inactiveMap.texture };
this.blurringPlane.material.uniforms.previousShadowMap = { value: inactiveMap.texture };
this.buffer1Active = ! this.buffer1Active;
this.renderer.render( this.scene, camera );
// Restore the object's Real-time Material and add it back to the original world
for ( let l = 0; l < this.lightMapContainers.length; l ++ ) {
this.lightMapContainers[ l ].object.frustumCulled =
this.lightMapContainers[ l ].object.oldFrustumCulled;
this.lightMapContainers[ l ].object.material = this.lightMapContainers[ l ].basicMat;
this.lightMapContainers[ l ].object.oldScene.attach( this.lightMapContainers[ l ].object );
}
// Restore the original Render Target
this.renderer.setRenderTarget( oldTarget );
}
/** DEBUG
* Draw the lightmap in the main scene. Call this after adding the objects to it.
* @param {boolean} visible Whether the debug plane should be visible
* @param {Vector3} position Where the debug plane should be drawn
*/
showDebugLightmap( visible, position = undefined ) {
if ( this.lightMapContainers.length === 0 ) {
console.warn( 'THREE.ProgressiveLightMap: Call .showDebugLightmap() after adding the objects.' );
return;
}
if ( this.labelMesh === null ) {
const labelMaterial = new MeshBasicMaterial( { map: this.progressiveLightMap1.texture, side: DoubleSide } );
const labelGeometry = new PlaneGeometry( 100, 100 );
this.labelMesh = new Mesh( labelGeometry, labelMaterial );
this.labelMesh.position.y = 250;
this.lightMapContainers[ 0 ].object.parent.add( this.labelMesh );
}
if ( position !== undefined ) {
this.labelMesh.position.copy( position );
}
this.labelMesh.visible = visible;
}
/**
* INTERNAL Creates the Blurring Plane
* @param {number} res The square resolution of this object's lightMap.
* @param {WebGLRenderTexture} lightMap The lightmap to initialize the plane with.
*/
_initializeBlurPlane( res, lightMap = null ) {
const blurMaterial = new MeshBasicMaterial();
blurMaterial.uniforms = { previousShadowMap: { value: null },
pixelOffset: { value: 1.0 / res },
polygonOffset: true, polygonOffsetFactor: - 1, polygonOffsetUnits: 3.0 };
blurMaterial.onBeforeCompile = ( shader ) => {
// Vertex Shader: Set Vertex Positions to the Unwrapped UV Positions
shader.vertexShader =
'#define USE_UV\n' +
shader.vertexShader.slice( 0, - 1 ) +
' gl_Position = vec4((uv - 0.5) * 2.0, 1.0, 1.0); }';
// Fragment Shader: Set Pixels to 9-tap box blur the current frame's Shadows
const bodyStart = shader.fragmentShader.indexOf( 'void main() {' );
shader.fragmentShader =
'#define USE_UV\n' +
shader.fragmentShader.slice( 0, bodyStart ) +
' uniform sampler2D previousShadowMap;\n uniform float pixelOffset;\n' +
shader.fragmentShader.slice( bodyStart - 1, - 1 ) +
` gl_FragColor.rgb = (
texture2D(previousShadowMap, vUv + vec2( pixelOffset, 0.0 )).rgb +
texture2D(previousShadowMap, vUv + vec2( 0.0 , pixelOffset)).rgb +
texture2D(previousShadowMap, vUv + vec2( 0.0 , -pixelOffset)).rgb +
texture2D(previousShadowMap, vUv + vec2(-pixelOffset, 0.0 )).rgb +
texture2D(previousShadowMap, vUv + vec2( pixelOffset, pixelOffset)).rgb +
texture2D(previousShadowMap, vUv + vec2(-pixelOffset, pixelOffset)).rgb +
texture2D(previousShadowMap, vUv + vec2( pixelOffset, -pixelOffset)).rgb +
texture2D(previousShadowMap, vUv + vec2(-pixelOffset, -pixelOffset)).rgb)/8.0;
}`;
// Set the LightMap Accumulation Buffer
shader.uniforms.previousShadowMap = { value: lightMap.texture };
shader.uniforms.pixelOffset = { value: 0.5 / res };
blurMaterial.uniforms = shader.uniforms;
// Set the new Shader to this
blurMaterial.userData.shader = shader;
};
this.blurringPlane = new Mesh( new PlaneGeometry( 1, 1 ), blurMaterial );
this.blurringPlane.name = 'Blurring Plane';
this.blurringPlane.frustumCulled = false;
this.blurringPlane.renderOrder = 0;
this.blurringPlane.material.depthWrite = false;
this.scene.add( this.blurringPlane );
}
/**
* Frees all internal resources.
*/
dispose() {
this.progressiveLightMap1.dispose();
this.progressiveLightMap2.dispose();
this.uvMat.dispose();
if ( this.blurringPlane !== null ) {
this.blurringPlane.geometry.dispose();
this.blurringPlane.material.dispose();
}
if ( this.labelMesh !== null ) {
this.labelMesh.geometry.dispose();
this.labelMesh.material.dispose();
}
}
}
export { ProgressiveLightMap };
|