Spaces:
Running
Running
File size: 8,346 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import {
AdditiveBlending,
Box2,
BufferGeometry,
Color,
FramebufferTexture,
InterleavedBuffer,
InterleavedBufferAttribute,
Mesh,
MeshBasicNodeMaterial,
NodeMaterial,
UnsignedByteType,
Vector2,
Vector3,
Vector4,
Node
} from 'three/webgpu';
import { texture, textureLoad, uv, ivec2, vec2, vec4, positionGeometry, reference, varyingProperty, materialReference, Fn } from 'three/tsl';
class LensflareMesh extends Mesh {
constructor() {
super( LensflareMesh.Geometry, new MeshBasicNodeMaterial( { opacity: 0, transparent: true } ) );
this.isLensflare = true;
this.type = 'LensflareMesh';
this.frustumCulled = false;
this.renderOrder = Infinity;
//
const positionView = new Vector3();
// textures
const tempMap = new FramebufferTexture( 16, 16 );
const occlusionMap = new FramebufferTexture( 16, 16 );
let currentType = UnsignedByteType;
const geometry = LensflareMesh.Geometry;
// values for shared material uniforms
const sharedValues = {
scale: new Vector2(),
positionScreen: new Vector3()
};
// materials
const scale = reference( 'scale', 'vec2', sharedValues );
const screenPosition = reference( 'positionScreen', 'vec3', sharedValues );
const vertexNode = vec4( positionGeometry.xy.mul( scale ).add( screenPosition.xy ), screenPosition.z, 1.0 );
const material1a = new NodeMaterial();
material1a.depthTest = true;
material1a.depthWrite = false;
material1a.transparent = false;
material1a.fog = false;
material1a.type = 'Lensflare-1a';
material1a.vertexNode = vertexNode;
material1a.fragmentNode = vec4( 1.0, 0.0, 1.0, 1.0 );
const material1b = new NodeMaterial();
material1b.depthTest = false;
material1b.depthWrite = false;
material1b.transparent = false;
material1b.fog = false;
material1b.type = 'Lensflare-1b';
material1b.vertexNode = vertexNode;
material1b.fragmentNode = texture( tempMap, vec2( uv().flipY() ) );
// the following object is used for occlusionMap generation
const mesh1 = new Mesh( geometry, material1a );
//
const elements = [];
const elementMeshes = [];
const material2 = new NodeMaterial();
material2.transparent = true;
material2.blending = AdditiveBlending;
material2.depthWrite = false;
material2.depthTest = false;
material2.fog = false;
material2.type = 'Lensflare-2';
material2.screenPosition = new Vector3();
material2.scale = new Vector2();
material2.occlusionMap = occlusionMap;
material2.vertexNode = Fn( ( { material } ) => {
const scale = materialReference( 'scale', 'vec2' );
const screenPosition = materialReference( 'screenPosition', 'vec3' );
const occlusionMap = material.occlusionMap;
const pos = positionGeometry.xy.toVar();
const visibility = textureLoad( occlusionMap, ivec2( 2, 2 ) ).toVar();
visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 2 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 2 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 8 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 14 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 14 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 14 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 8 ) ) );
visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 8 ) ) );
const vVisibility = varyingProperty( 'float', 'vVisibility' );
vVisibility.assign( visibility.r.div( 9.0 ) );
vVisibility.mulAssign( visibility.g.div( 9.0 ).oneMinus() );
vVisibility.mulAssign( visibility.b.div( 9.0 ) );
return vec4( ( pos.mul( scale ).add( screenPosition.xy ).xy ), screenPosition.z, 1.0 );
} )();
material2.fragmentNode = Fn( () => {
const color = reference( 'color', 'color' );
const map = reference( 'map', 'texture' );
const vVisibility = varyingProperty( 'float', 'vVisibility' );
const output = map.toVar();
output.a.mulAssign( vVisibility );
output.rgb.mulAssign( color );
return output;
} )();
this.addElement = function ( element ) {
elements.push( element );
};
//
const positionScreen = sharedValues.positionScreen;
const screenPositionPixels = new Vector4( 0, 0, 16, 16 );
const validArea = new Box2();
const viewport = new Vector4();
// dummy node for renderer.renderObject()
const lightsNode = new Node();
this.onBeforeRender = ( renderer, scene, camera ) => {
renderer.getViewport( viewport );
viewport.multiplyScalar( window.devicePixelRatio );
const renderTarget = renderer.getRenderTarget();
const type = ( renderTarget !== null ) ? renderTarget.texture.type : UnsignedByteType;
if ( currentType !== type ) {
tempMap.dispose();
occlusionMap.dispose();
tempMap.type = occlusionMap.type = type;
currentType = type;
}
const invAspect = viewport.w / viewport.z;
const halfViewportWidth = viewport.z / 2.0;
const halfViewportHeight = viewport.w / 2.0;
const size = 16 / viewport.w;
sharedValues.scale.set( size * invAspect, size );
validArea.min.set( viewport.x, viewport.y );
validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );
// calculate position in screen space
positionView.setFromMatrixPosition( this.matrixWorld );
positionView.applyMatrix4( camera.matrixWorldInverse );
if ( positionView.z > 0 ) return; // lensflare is behind the camera
positionScreen.copy( positionView ).applyMatrix4( camera.projectionMatrix );
// horizontal and vertical coordinate of the lower left corner of the pixels to copy
screenPositionPixels.x = viewport.x + ( positionScreen.x * halfViewportWidth ) + halfViewportWidth - 8;
screenPositionPixels.y = viewport.y - ( positionScreen.y * halfViewportHeight ) + halfViewportHeight - 8;
// screen cull
if ( validArea.containsPoint( screenPositionPixels ) ) {
// save current RGB to temp texture
renderer.copyFramebufferToTexture( tempMap, screenPositionPixels );
// render pink quad
renderer.renderObject( mesh1, scene, camera, geometry, material1a, null, lightsNode );
// copy result to occlusionMap
renderer.copyFramebufferToTexture( occlusionMap, screenPositionPixels );
// restore graphics
renderer.renderObject( mesh1, scene, camera, geometry, material1b, null, lightsNode );
// render elements
const vecX = - positionScreen.x * 2;
const vecY = - positionScreen.y * 2;
for ( let i = 0, l = elements.length; i < l; i ++ ) {
const element = elements[ i ];
let mesh2 = elementMeshes[ i ];
if ( mesh2 === undefined ) {
mesh2 = elementMeshes[ i ] = new Mesh( geometry, material2 );
mesh2.color = element.color.convertSRGBToLinear();
mesh2.map = element.texture;
}
material2.screenPosition.x = positionScreen.x + vecX * element.distance;
material2.screenPosition.y = positionScreen.y - vecY * element.distance;
material2.screenPosition.z = positionScreen.z;
const size = element.size / viewport.w;
material2.scale.set( size * invAspect, size );
renderer.renderObject( mesh2, scene, camera, geometry, material2, null, lightsNode );
}
}
};
this.dispose = function () {
material1a.dispose();
material1b.dispose();
material2.dispose();
tempMap.dispose();
occlusionMap.dispose();
for ( let i = 0, l = elements.length; i < l; i ++ ) {
elements[ i ].texture.dispose();
}
};
}
}
//
class LensflareElement {
constructor( texture, size = 1, distance = 0, color = new Color( 0xffffff ) ) {
this.texture = texture;
this.size = size;
this.distance = distance;
this.color = color;
}
}
LensflareMesh.Geometry = ( function () {
const geometry = new BufferGeometry();
const float32Array = new Float32Array( [
- 1, - 1, 0, 0, 0,
1, - 1, 0, 1, 0,
1, 1, 0, 1, 1,
- 1, 1, 0, 0, 1
] );
const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );
geometry.setIndex( [ 0, 1, 2, 0, 2, 3 ] );
geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );
return geometry;
} )();
export { LensflareMesh, LensflareElement };
|