File size: 8,346 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import {
	AdditiveBlending,
	Box2,
	BufferGeometry,
	Color,
	FramebufferTexture,
	InterleavedBuffer,
	InterleavedBufferAttribute,
	Mesh,
	MeshBasicNodeMaterial,
	NodeMaterial,
	UnsignedByteType,
	Vector2,
	Vector3,
	Vector4,
	Node
} from 'three/webgpu';

import { texture, textureLoad, uv, ivec2, vec2, vec4, positionGeometry, reference, varyingProperty, materialReference, Fn } from 'three/tsl';

class LensflareMesh extends Mesh {

	constructor() {

		super( LensflareMesh.Geometry, new MeshBasicNodeMaterial( { opacity: 0, transparent: true } ) );

		this.isLensflare = true;

		this.type = 'LensflareMesh';
		this.frustumCulled = false;
		this.renderOrder = Infinity;

		//

		const positionView = new Vector3();

		// textures

		const tempMap = new FramebufferTexture( 16, 16 );
		const occlusionMap = new FramebufferTexture( 16, 16 );

		let currentType = UnsignedByteType;

		const geometry = LensflareMesh.Geometry;

		// values for shared material uniforms

		const sharedValues = {
			scale: new Vector2(),
			positionScreen: new Vector3()
		};

		// materials

		const scale = reference( 'scale', 'vec2', sharedValues );
		const screenPosition = reference( 'positionScreen', 'vec3', sharedValues );

		const vertexNode = vec4( positionGeometry.xy.mul( scale ).add( screenPosition.xy ), screenPosition.z, 1.0 );

		const material1a = new NodeMaterial();

		material1a.depthTest = true;
		material1a.depthWrite = false;
		material1a.transparent = false;
		material1a.fog = false;
		material1a.type = 'Lensflare-1a';

		material1a.vertexNode = vertexNode;
		material1a.fragmentNode = vec4( 1.0, 0.0, 1.0, 1.0 );

		const material1b = new NodeMaterial();

		material1b.depthTest = false;
		material1b.depthWrite = false;
		material1b.transparent = false;
		material1b.fog = false;
		material1b.type = 'Lensflare-1b';

		material1b.vertexNode = vertexNode;
		material1b.fragmentNode = texture( tempMap, vec2( uv().flipY() ) );

		// the following object is used for occlusionMap generation

		const mesh1 = new Mesh( geometry, material1a );

		//

		const elements = [];
		const elementMeshes = [];

		const material2 = new NodeMaterial();

		material2.transparent = true;
		material2.blending = AdditiveBlending;
		material2.depthWrite = false;
		material2.depthTest = false;
		material2.fog = false;
		material2.type = 'Lensflare-2';

		material2.screenPosition = new Vector3();
		material2.scale = new Vector2();
		material2.occlusionMap = occlusionMap;

		material2.vertexNode = Fn( ( { material } ) => {

			const scale = materialReference( 'scale', 'vec2' );
			const screenPosition = materialReference( 'screenPosition', 'vec3' );

			const occlusionMap = material.occlusionMap;

			const pos = positionGeometry.xy.toVar();

			const visibility = textureLoad( occlusionMap, ivec2( 2, 2 ) ).toVar();
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 2 ) ) );
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 2 ) ) );
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 8 ) ) );
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 14, 14 ) ) );
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 14 ) ) );
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 14 ) ) );
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 2, 8 ) ) );
			visibility.addAssign( textureLoad( occlusionMap, ivec2( 8, 8 ) ) );

			const vVisibility = varyingProperty( 'float', 'vVisibility' );

			vVisibility.assign( visibility.r.div( 9.0 ) );
			vVisibility.mulAssign( visibility.g.div( 9.0 ).oneMinus() );
			vVisibility.mulAssign( visibility.b.div( 9.0 ) );

			return vec4( ( pos.mul( scale ).add( screenPosition.xy ).xy ), screenPosition.z, 1.0 );

		} )();

		material2.fragmentNode = Fn( () => {

			const color = reference( 'color', 'color' );
			const map = reference( 'map', 'texture' );

			const vVisibility = varyingProperty( 'float', 'vVisibility' );

			const output = map.toVar();

			output.a.mulAssign( vVisibility );
			output.rgb.mulAssign( color );

			return output;

		} )();


		this.addElement = function ( element ) {

			elements.push( element );

		};

		//

		const positionScreen = sharedValues.positionScreen;
		const screenPositionPixels = new Vector4( 0, 0, 16, 16 );
		const validArea = new Box2();
		const viewport = new Vector4();

		// dummy node for renderer.renderObject()
		const lightsNode = new Node();

		this.onBeforeRender = ( renderer, scene, camera ) => {

			renderer.getViewport( viewport );

			viewport.multiplyScalar( window.devicePixelRatio );

			const renderTarget = renderer.getRenderTarget();
			const type = ( renderTarget !== null ) ? renderTarget.texture.type : UnsignedByteType;

			if ( currentType !== type ) {

				tempMap.dispose();
				occlusionMap.dispose();

				tempMap.type = occlusionMap.type = type;

				currentType = type;

			}

			const invAspect = viewport.w / viewport.z;
			const halfViewportWidth = viewport.z / 2.0;
			const halfViewportHeight = viewport.w / 2.0;

			const size = 16 / viewport.w;

			sharedValues.scale.set( size * invAspect, size );

			validArea.min.set( viewport.x, viewport.y );
			validArea.max.set( viewport.x + ( viewport.z - 16 ), viewport.y + ( viewport.w - 16 ) );

			// calculate position in screen space

			positionView.setFromMatrixPosition( this.matrixWorld );
			positionView.applyMatrix4( camera.matrixWorldInverse );

			if ( positionView.z > 0 ) return; // lensflare is behind the camera

			positionScreen.copy( positionView ).applyMatrix4( camera.projectionMatrix );

			// horizontal and vertical coordinate of the lower left corner of the pixels to copy

			screenPositionPixels.x = viewport.x + ( positionScreen.x * halfViewportWidth ) + halfViewportWidth - 8;
			screenPositionPixels.y = viewport.y - ( positionScreen.y * halfViewportHeight ) + halfViewportHeight - 8;

			// screen cull

			if ( validArea.containsPoint( screenPositionPixels ) ) {

				// save current RGB to temp texture

				renderer.copyFramebufferToTexture( tempMap, screenPositionPixels );

				// render pink quad

				renderer.renderObject( mesh1, scene, camera, geometry, material1a, null, lightsNode );

				// copy result to occlusionMap

				renderer.copyFramebufferToTexture( occlusionMap, screenPositionPixels );

				// restore graphics

				renderer.renderObject( mesh1, scene, camera, geometry, material1b, null, lightsNode );

				// render elements

				const vecX = - positionScreen.x * 2;
				const vecY = - positionScreen.y * 2;

				for ( let i = 0, l = elements.length; i < l; i ++ ) {

					const element = elements[ i ];

					let mesh2 = elementMeshes[ i ];

					if ( mesh2 === undefined ) {

						mesh2 = elementMeshes[ i ] = new Mesh( geometry, material2 );

						mesh2.color = element.color.convertSRGBToLinear();
						mesh2.map = element.texture;

					}

					material2.screenPosition.x = positionScreen.x + vecX * element.distance;
					material2.screenPosition.y = positionScreen.y - vecY * element.distance;
					material2.screenPosition.z = positionScreen.z;

					const size = element.size / viewport.w;

					material2.scale.set( size * invAspect, size );

					renderer.renderObject( mesh2, scene, camera, geometry, material2, null, lightsNode );

				}

			}

		};

		this.dispose = function () {

			material1a.dispose();
			material1b.dispose();
			material2.dispose();

			tempMap.dispose();
			occlusionMap.dispose();

			for ( let i = 0, l = elements.length; i < l; i ++ ) {

				elements[ i ].texture.dispose();

			}

		};

	}

}

//

class LensflareElement {

	constructor( texture, size = 1, distance = 0, color = new Color( 0xffffff ) ) {

		this.texture = texture;
		this.size = size;
		this.distance = distance;
		this.color = color;

	}

}

LensflareMesh.Geometry = ( function () {

	const geometry = new BufferGeometry();

	const float32Array = new Float32Array( [
		- 1, - 1, 0, 0, 0,
		1, - 1, 0, 1, 0,
		1, 1, 0, 1, 1,
		- 1, 1, 0, 0, 1
	] );

	const interleavedBuffer = new InterleavedBuffer( float32Array, 5 );

	geometry.setIndex( [ 0, 1, 2,	0, 2, 3 ] );
	geometry.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) );
	geometry.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) );

	return geometry;

} )();

export { LensflareMesh, LensflareElement };