Spaces:
Running
Running
File size: 8,712 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import {
Clock,
Color,
Matrix4,
Mesh,
RepeatWrapping,
ShaderMaterial,
TextureLoader,
UniformsLib,
UniformsUtils,
Vector2,
Vector4
} from 'three';
import { Reflector } from '../objects/Reflector.js';
import { Refractor } from '../objects/Refractor.js';
/**
* References:
* https://alex.vlachos.com/graphics/Vlachos-SIGGRAPH10-WaterFlow.pdf
* http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html
*
*/
class Water extends Mesh {
constructor( geometry, options = {} ) {
super( geometry );
this.isWater = true;
this.type = 'Water';
const scope = this;
const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0xFFFFFF );
const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512;
const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512;
const clipBias = options.clipBias !== undefined ? options.clipBias : 0;
const flowDirection = options.flowDirection !== undefined ? options.flowDirection : new Vector2( 1, 0 );
const flowSpeed = options.flowSpeed !== undefined ? options.flowSpeed : 0.03;
const reflectivity = options.reflectivity !== undefined ? options.reflectivity : 0.02;
const scale = options.scale !== undefined ? options.scale : 1;
const shader = options.shader !== undefined ? options.shader : Water.WaterShader;
const textureLoader = new TextureLoader();
const flowMap = options.flowMap || undefined;
const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' );
const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' );
const cycle = 0.15; // a cycle of a flow map phase
const halfCycle = cycle * 0.5;
const textureMatrix = new Matrix4();
const clock = new Clock();
// internal components
if ( Reflector === undefined ) {
console.error( 'THREE.Water: Required component Reflector not found.' );
return;
}
if ( Refractor === undefined ) {
console.error( 'THREE.Water: Required component Refractor not found.' );
return;
}
const reflector = new Reflector( geometry, {
textureWidth: textureWidth,
textureHeight: textureHeight,
clipBias: clipBias
} );
const refractor = new Refractor( geometry, {
textureWidth: textureWidth,
textureHeight: textureHeight,
clipBias: clipBias
} );
reflector.matrixAutoUpdate = false;
refractor.matrixAutoUpdate = false;
// material
this.material = new ShaderMaterial( {
name: shader.name,
uniforms: UniformsUtils.merge( [
UniformsLib[ 'fog' ],
shader.uniforms
] ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
transparent: true,
fog: true
} );
if ( flowMap !== undefined ) {
this.material.defines.USE_FLOWMAP = '';
this.material.uniforms[ 'tFlowMap' ] = {
type: 't',
value: flowMap
};
} else {
this.material.uniforms[ 'flowDirection' ] = {
type: 'v2',
value: flowDirection
};
}
// maps
normalMap0.wrapS = normalMap0.wrapT = RepeatWrapping;
normalMap1.wrapS = normalMap1.wrapT = RepeatWrapping;
this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture;
this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture;
this.material.uniforms[ 'tNormalMap0' ].value = normalMap0;
this.material.uniforms[ 'tNormalMap1' ].value = normalMap1;
// water
this.material.uniforms[ 'color' ].value = color;
this.material.uniforms[ 'reflectivity' ].value = reflectivity;
this.material.uniforms[ 'textureMatrix' ].value = textureMatrix;
// initial values
this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0
this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1
this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle
this.material.uniforms[ 'config' ].value.w = scale; // scale
// functions
function updateTextureMatrix( camera ) {
textureMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
textureMatrix.multiply( camera.projectionMatrix );
textureMatrix.multiply( camera.matrixWorldInverse );
textureMatrix.multiply( scope.matrixWorld );
}
function updateFlow() {
const delta = clock.getDelta();
const config = scope.material.uniforms[ 'config' ];
config.value.x += flowSpeed * delta; // flowMapOffset0
config.value.y = config.value.x + halfCycle; // flowMapOffset1
// Important: The distance between offsets should be always the value of "halfCycle".
// Moreover, both offsets should be in the range of [ 0, cycle ].
// This approach ensures a smooth water flow and avoids "reset" effects.
if ( config.value.x >= cycle ) {
config.value.x = 0;
config.value.y = halfCycle;
} else if ( config.value.y >= cycle ) {
config.value.y = config.value.y - cycle;
}
}
//
this.onBeforeRender = function ( renderer, scene, camera ) {
updateTextureMatrix( camera );
updateFlow();
scope.visible = false;
reflector.matrixWorld.copy( scope.matrixWorld );
refractor.matrixWorld.copy( scope.matrixWorld );
reflector.onBeforeRender( renderer, scene, camera );
refractor.onBeforeRender( renderer, scene, camera );
scope.visible = true;
};
}
}
Water.WaterShader = {
name: 'WaterShader',
uniforms: {
'color': {
type: 'c',
value: null
},
'reflectivity': {
type: 'f',
value: 0
},
'tReflectionMap': {
type: 't',
value: null
},
'tRefractionMap': {
type: 't',
value: null
},
'tNormalMap0': {
type: 't',
value: null
},
'tNormalMap1': {
type: 't',
value: null
},
'textureMatrix': {
type: 'm4',
value: null
},
'config': {
type: 'v4',
value: new Vector4()
}
},
vertexShader: /* glsl */`
#include <common>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
uniform mat4 textureMatrix;
varying vec4 vCoord;
varying vec2 vUv;
varying vec3 vToEye;
void main() {
vUv = uv;
vCoord = textureMatrix * vec4( position, 1.0 );
vec4 worldPosition = modelMatrix * vec4( position, 1.0 );
vToEye = cameraPosition - worldPosition.xyz;
vec4 mvPosition = viewMatrix * worldPosition; // used in fog_vertex
gl_Position = projectionMatrix * mvPosition;
#include <logdepthbuf_vertex>
#include <fog_vertex>
}`,
fragmentShader: /* glsl */`
#include <common>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
uniform sampler2D tReflectionMap;
uniform sampler2D tRefractionMap;
uniform sampler2D tNormalMap0;
uniform sampler2D tNormalMap1;
#ifdef USE_FLOWMAP
uniform sampler2D tFlowMap;
#else
uniform vec2 flowDirection;
#endif
uniform vec3 color;
uniform float reflectivity;
uniform vec4 config;
varying vec4 vCoord;
varying vec2 vUv;
varying vec3 vToEye;
void main() {
#include <logdepthbuf_fragment>
float flowMapOffset0 = config.x;
float flowMapOffset1 = config.y;
float halfCycle = config.z;
float scale = config.w;
vec3 toEye = normalize( vToEye );
// determine flow direction
vec2 flow;
#ifdef USE_FLOWMAP
flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0;
#else
flow = flowDirection;
#endif
flow.x *= - 1.0;
// sample normal maps (distort uvs with flowdata)
vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 );
vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 );
// linear interpolate to get the final normal color
float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle;
vec4 normalColor = mix( normalColor0, normalColor1, flowLerp );
// calculate normal vector
vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) );
// calculate the fresnel term to blend reflection and refraction maps
float theta = max( dot( toEye, normal ), 0.0 );
float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 );
// calculate final uv coords
vec3 coord = vCoord.xyz / vCoord.w;
vec2 uv = coord.xy + coord.z * normal.xz * 0.05;
vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) );
vec4 refractColor = texture2D( tRefractionMap, uv );
// multiply water color with the mix of both textures
gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance );
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
}`
};
export { Water };
|