Spaces:
Running
Running
File size: 4,559 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import {
Color,
Mesh,
Vector2,
Vector3,
NodeMaterial,
NodeUpdateType,
TempNode
} from 'three/webgpu';
import { Fn, vec2, viewportSafeUV, viewportSharedTexture, reflector, pow, float, abs, texture, uniform, vec4, cameraPosition, positionWorld, uv, mix, vec3, normalize, max, dot, screenUV } from 'three/tsl';
/**
* References:
* https://alex.vlachos.com/graphics/Vlachos-SIGGRAPH10-WaterFlow.pdf
* http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html
*
*/
class WaterMesh extends Mesh {
constructor( geometry, options = {} ) {
const material = new NodeMaterial();
super( geometry, material );
this.isWater = true;
material.fragmentNode = new WaterNode( options, this );
}
}
class WaterNode extends TempNode {
constructor( options, waterBody ) {
super( 'vec4' );
this.waterBody = waterBody;
this.normalMap0 = texture( options.normalMap0 );
this.normalMap1 = texture( options.normalMap1 );
this.flowMap = texture( options.flowMap !== undefined ? options.flowMap : null );
this.color = uniform( options.color !== undefined ? new Color( options.color ) : new Color( 0xffffff ) );
this.flowDirection = uniform( options.flowDirection !== undefined ? options.flowDirection : new Vector2( 1, 0 ) );
this.flowSpeed = uniform( options.flowSpeed !== undefined ? options.flowSpeed : 0.03 );
this.reflectivity = uniform( options.reflectivity !== undefined ? options.reflectivity : 0.02 );
this.scale = uniform( options.scale !== undefined ? options.scale : 1 );
this.flowConfig = uniform( new Vector3() );
this.updateBeforeType = NodeUpdateType.RENDER;
this._cycle = 0.15; // a cycle of a flow map phase
this._halfCycle = this._cycle * 0.5;
this._USE_FLOW = options.flowMap !== undefined;
}
updateFlow( delta ) {
this.flowConfig.value.x += this.flowSpeed.value * delta; // flowMapOffset0
this.flowConfig.value.y = this.flowConfig.value.x + this._halfCycle; // flowMapOffset1
// Important: The distance between offsets should be always the value of "halfCycle".
// Moreover, both offsets should be in the range of [ 0, cycle ].
// This approach ensures a smooth water flow and avoids "reset" effects.
if ( this.flowConfig.value.x >= this._cycle ) {
this.flowConfig.value.x = 0;
this.flowConfig.value.y = this._halfCycle;
} else if ( this.flowConfig.value.y >= this._cycle ) {
this.flowConfig.value.y = this.flowConfig.value.y - this._cycle;
}
this.flowConfig.value.z = this._halfCycle;
}
updateBefore( frame ) {
this.updateFlow( frame.deltaTime );
}
setup() {
const outputNode = Fn( () => {
const flowMapOffset0 = this.flowConfig.x;
const flowMapOffset1 = this.flowConfig.y;
const halfCycle = this.flowConfig.z;
const toEye = normalize( cameraPosition.sub( positionWorld ) );
let flow;
if ( this._USE_FLOW === true ) {
flow = this.flowMap.rg.mul( 2 ).sub( 1 );
} else {
flow = vec2( this.flowDirection.x, this.flowDirection.y );
}
flow.x.mulAssign( - 1 );
// sample normal maps (distort uvs with flowdata)
const uvs = uv();
const normalUv0 = uvs.mul( this.scale ).add( flow.mul( flowMapOffset0 ) );
const normalUv1 = uvs.mul( this.scale ).add( flow.mul( flowMapOffset1 ) );
const normalColor0 = this.normalMap0.sample( normalUv0 );
const normalColor1 = this.normalMap1.sample( normalUv1 );
// linear interpolate to get the final normal color
const flowLerp = abs( halfCycle.sub( flowMapOffset0 ) ).div( halfCycle );
const normalColor = mix( normalColor0, normalColor1, flowLerp );
// calculate normal vector
const normal = normalize( vec3( normalColor.r.mul( 2 ).sub( 1 ), normalColor.b, normalColor.g.mul( 2 ).sub( 1 ) ) );
// calculate the fresnel term to blend reflection and refraction maps
const theta = max( dot( toEye, normal ), 0 );
const reflectance = pow( float( 1.0 ).sub( theta ), 5.0 ).mul( float( 1.0 ).sub( this.reflectivity ) ).add( this.reflectivity );
// reflector, refractor
const offset = normal.xz.mul( 0.05 ).toVar();
const reflectionSampler = reflector();
this.waterBody.add( reflectionSampler.target );
reflectionSampler.uvNode = reflectionSampler.uvNode.add( offset );
const refractorUV = screenUV.add( offset );
const refractionSampler = viewportSharedTexture( viewportSafeUV( refractorUV ) );
// calculate final uv coords
return vec4( this.color, 1.0 ).mul( mix( refractionSampler, reflectionSampler, reflectance ) );
} )();
return outputNode;
}
}
export { WaterMesh };
|