File size: 4,559 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import {
	Color,
	Mesh,
	Vector2,
	Vector3,
	NodeMaterial,
	NodeUpdateType,
	TempNode
} from 'three/webgpu';

import { Fn, vec2, viewportSafeUV, viewportSharedTexture, reflector, pow, float, abs, texture, uniform, vec4, cameraPosition, positionWorld, uv, mix, vec3, normalize, max, dot, screenUV } from 'three/tsl';

/**
 * References:
 *	https://alex.vlachos.com/graphics/Vlachos-SIGGRAPH10-WaterFlow.pdf
 *	http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html
 *
 */

class WaterMesh extends Mesh {

	constructor( geometry, options = {} ) {

		const material = new NodeMaterial();

		super( geometry, material );

		this.isWater = true;

		material.fragmentNode = new WaterNode( options, this );

	}

}

class WaterNode extends TempNode {

	constructor( options, waterBody ) {

		super( 'vec4' );

		this.waterBody = waterBody;

		this.normalMap0 = texture( options.normalMap0 );
		this.normalMap1 = texture( options.normalMap1 );
		this.flowMap = texture( options.flowMap !== undefined ? options.flowMap : null );

		this.color = uniform( options.color !== undefined ? new Color( options.color ) : new Color( 0xffffff ) );
		this.flowDirection = uniform( options.flowDirection !== undefined ? options.flowDirection : new Vector2( 1, 0 ) );
		this.flowSpeed = uniform( options.flowSpeed !== undefined ? options.flowSpeed : 0.03 );
		this.reflectivity = uniform( options.reflectivity !== undefined ? options.reflectivity : 0.02 );
		this.scale = uniform( options.scale !== undefined ? options.scale : 1 );
		this.flowConfig = uniform( new Vector3() );

		this.updateBeforeType = NodeUpdateType.RENDER;

		this._cycle = 0.15; // a cycle of a flow map phase
		this._halfCycle = this._cycle * 0.5;

		this._USE_FLOW = options.flowMap !== undefined;

	}

	updateFlow( delta ) {

		this.flowConfig.value.x += this.flowSpeed.value * delta; // flowMapOffset0
		this.flowConfig.value.y = this.flowConfig.value.x + this._halfCycle; // flowMapOffset1

		// Important: The distance between offsets should be always the value of "halfCycle".
		// Moreover, both offsets should be in the range of [ 0, cycle ].
		// This approach ensures a smooth water flow and avoids "reset" effects.

		if ( this.flowConfig.value.x >= this._cycle ) {

			this.flowConfig.value.x = 0;
			this.flowConfig.value.y = this._halfCycle;

		} else if ( this.flowConfig.value.y >= this._cycle ) {

			this.flowConfig.value.y = this.flowConfig.value.y - this._cycle;

		}

		this.flowConfig.value.z = this._halfCycle;

	}

	updateBefore( frame ) {

		this.updateFlow( frame.deltaTime );

	}

	setup() {

		const outputNode = Fn( () => {

			const flowMapOffset0 = this.flowConfig.x;
			const flowMapOffset1 = this.flowConfig.y;
			const halfCycle = this.flowConfig.z;

			const toEye = normalize( cameraPosition.sub( positionWorld ) );

			let flow;

			if ( this._USE_FLOW === true ) {

				flow = this.flowMap.rg.mul( 2 ).sub( 1 );

			} else {

				flow = vec2( this.flowDirection.x, this.flowDirection.y );

			}

			flow.x.mulAssign( - 1 );

			// sample normal maps (distort uvs with flowdata)

			const uvs = uv();

			const normalUv0 = uvs.mul( this.scale ).add( flow.mul( flowMapOffset0 ) );
			const normalUv1 = uvs.mul( this.scale ).add( flow.mul( flowMapOffset1 ) );

			const normalColor0 = this.normalMap0.sample( normalUv0 );
			const normalColor1 = this.normalMap1.sample( normalUv1 );

			// linear interpolate to get the final normal color
			const flowLerp = abs( halfCycle.sub( flowMapOffset0 ) ).div( halfCycle );
			const normalColor = mix( normalColor0, normalColor1, flowLerp );

			// calculate normal vector
			const normal = normalize( vec3( normalColor.r.mul( 2 ).sub( 1 ), normalColor.b, normalColor.g.mul( 2 ).sub( 1 ) ) );

			// calculate the fresnel term to blend reflection and refraction maps
			const theta = max( dot( toEye, normal ), 0 );
			const reflectance = pow( float( 1.0 ).sub( theta ), 5.0 ).mul( float( 1.0 ).sub( this.reflectivity ) ).add( this.reflectivity );

			// reflector, refractor

			const offset = normal.xz.mul( 0.05 ).toVar();

			const reflectionSampler = reflector();
			this.waterBody.add( reflectionSampler.target );
			reflectionSampler.uvNode = reflectionSampler.uvNode.add( offset );

			const refractorUV = screenUV.add( offset );
			const refractionSampler = viewportSharedTexture( viewportSafeUV( refractorUV ) );

			// calculate final uv coords

			return vec4( this.color, 1.0 ).mul( mix( refractionSampler, reflectionSampler, reflectance ) );

		} )();

		return outputNode;

	}

}

export { WaterMesh };