File size: 6,113 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import {
	AdditiveBlending,
	Color,
	HalfFloatType,
	ShaderMaterial,
	UniformsUtils,
	WebGLRenderTarget
} from 'three';
import { Pass, FullScreenQuad } from './Pass.js';
import { CopyShader } from '../shaders/CopyShader.js';

/**
*
* Supersample Anti-Aliasing Render Pass
*
* This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results.
*
* References: https://en.wikipedia.org/wiki/Supersampling
*
*/

class SSAARenderPass extends Pass {

	constructor( scene, camera, clearColor, clearAlpha ) {

		super();

		this.scene = scene;
		this.camera = camera;

		this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16.
		this.unbiased = true;

		this.stencilBuffer = false;

		// as we need to clear the buffer in this pass, clearColor must be set to something, defaults to black.
		this.clearColor = ( clearColor !== undefined ) ? clearColor : 0x000000;
		this.clearAlpha = ( clearAlpha !== undefined ) ? clearAlpha : 0;
		this._oldClearColor = new Color();

		const copyShader = CopyShader;
		this.copyUniforms = UniformsUtils.clone( copyShader.uniforms );

		this.copyMaterial = new ShaderMaterial(	{
			uniforms: this.copyUniforms,
			vertexShader: copyShader.vertexShader,
			fragmentShader: copyShader.fragmentShader,
			transparent: true,
			depthTest: false,
			depthWrite: false,
			premultipliedAlpha: true,
			blending: AdditiveBlending
		} );

		this.fsQuad = new FullScreenQuad( this.copyMaterial );

	}

	dispose() {

		if ( this.sampleRenderTarget ) {

			this.sampleRenderTarget.dispose();
			this.sampleRenderTarget = null;

		}

		this.copyMaterial.dispose();

		this.fsQuad.dispose();

	}

	setSize( width, height ) {

		if ( this.sampleRenderTarget )	this.sampleRenderTarget.setSize( width, height );

	}

	render( renderer, writeBuffer, readBuffer ) {

		if ( ! this.sampleRenderTarget ) {

			this.sampleRenderTarget = new WebGLRenderTarget( readBuffer.width, readBuffer.height, { type: HalfFloatType, stencilBuffer: this.stencilBuffer } );
			this.sampleRenderTarget.texture.name = 'SSAARenderPass.sample';

		}

		const jitterOffsets = _JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ];

		const autoClear = renderer.autoClear;
		renderer.autoClear = false;

		renderer.getClearColor( this._oldClearColor );
		const oldClearAlpha = renderer.getClearAlpha();

		const baseSampleWeight = 1.0 / jitterOffsets.length;
		const roundingRange = 1 / 32;
		this.copyUniforms[ 'tDiffuse' ].value = this.sampleRenderTarget.texture;

		const viewOffset = {

			fullWidth: readBuffer.width,
			fullHeight: readBuffer.height,
			offsetX: 0,
			offsetY: 0,
			width: readBuffer.width,
			height: readBuffer.height

		};

		const originalViewOffset = Object.assign( {}, this.camera.view );

		if ( originalViewOffset.enabled ) Object.assign( viewOffset, originalViewOffset );

		// render the scene multiple times, each slightly jitter offset from the last and accumulate the results.
		for ( let i = 0; i < jitterOffsets.length; i ++ ) {

			const jitterOffset = jitterOffsets[ i ];

			if ( this.camera.setViewOffset ) {

				this.camera.setViewOffset(

					viewOffset.fullWidth, viewOffset.fullHeight,

					viewOffset.offsetX + jitterOffset[ 0 ] * 0.0625, viewOffset.offsetY + jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16

					viewOffset.width, viewOffset.height

				);

			}

			let sampleWeight = baseSampleWeight;

			if ( this.unbiased ) {

				// the theory is that equal weights for each sample lead to an accumulation of rounding errors.
				// The following equation varies the sampleWeight per sample so that it is uniformly distributed
				// across a range of values whose rounding errors cancel each other out.

				const uniformCenteredDistribution = ( - 0.5 + ( i + 0.5 ) / jitterOffsets.length );
				sampleWeight += roundingRange * uniformCenteredDistribution;

			}

			this.copyUniforms[ 'opacity' ].value = sampleWeight;
			renderer.setClearColor( this.clearColor, this.clearAlpha );
			renderer.setRenderTarget( this.sampleRenderTarget );
			renderer.clear();
			renderer.render( this.scene, this.camera );

			renderer.setRenderTarget( this.renderToScreen ? null : writeBuffer );

			if ( i === 0 ) {

				renderer.setClearColor( 0x000000, 0.0 );
				renderer.clear();

			}

			this.fsQuad.render( renderer );

		}

		if ( this.camera.setViewOffset && originalViewOffset.enabled ) {

			this.camera.setViewOffset(

				originalViewOffset.fullWidth, originalViewOffset.fullHeight,

				originalViewOffset.offsetX, originalViewOffset.offsetY,

				originalViewOffset.width, originalViewOffset.height

			);

		} else if ( this.camera.clearViewOffset ) {

			this.camera.clearViewOffset();

		}

		renderer.autoClear = autoClear;
		renderer.setClearColor( this._oldClearColor, oldClearAlpha );

	}

}


// These jitter vectors are specified in integers because it is easier.
// I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5)
// before being used, thus these integers need to be scaled by 1/16.
//
// Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
const _JitterVectors = [
	[
		[ 0, 0 ]
	],
	[
		[ 4, 4 ], [ - 4, - 4 ]
	],
	[
		[ - 2, - 6 ], [ 6, - 2 ], [ - 6, 2 ], [ 2, 6 ]
	],
	[
		[ 1, - 3 ], [ - 1, 3 ], [ 5, 1 ], [ - 3, - 5 ],
		[ - 5, 5 ], [ - 7, - 1 ], [ 3, 7 ], [ 7, - 7 ]
	],
	[
		[ 1, 1 ], [ - 1, - 3 ], [ - 3, 2 ], [ 4, - 1 ],
		[ - 5, - 2 ], [ 2, 5 ], [ 5, 3 ], [ 3, - 5 ],
		[ - 2, 6 ], [ 0, - 7 ], [ - 4, - 6 ], [ - 6, 4 ],
		[ - 8, 0 ], [ 7, - 4 ], [ 6, 7 ], [ - 7, - 8 ]
	],
	[
		[ - 4, - 7 ], [ - 7, - 5 ], [ - 3, - 5 ], [ - 5, - 4 ],
		[ - 1, - 4 ], [ - 2, - 2 ], [ - 6, - 1 ], [ - 4, 0 ],
		[ - 7, 1 ], [ - 1, 2 ], [ - 6, 3 ], [ - 3, 3 ],
		[ - 7, 6 ], [ - 3, 6 ], [ - 5, 7 ], [ - 1, 7 ],
		[ 5, - 7 ], [ 1, - 6 ], [ 6, - 5 ], [ 4, - 4 ],
		[ 2, - 3 ], [ 7, - 2 ], [ 1, - 1 ], [ 4, - 1 ],
		[ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ],
		[ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ]
	]
];

export { SSAARenderPass };