File size: 8,584 Bytes
a28eca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/**
 * RGB Halftone shader for three.js.
 *	NOTE:
 * 		Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square)
 *		Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker)
 */

const HalftoneShader = {

	name: 'HalftoneShader',

	uniforms: {
		'tDiffuse': { value: null },
		'shape': { value: 1 },
		'radius': { value: 4 },
		'rotateR': { value: Math.PI / 12 * 1 },
		'rotateG': { value: Math.PI / 12 * 2 },
		'rotateB': { value: Math.PI / 12 * 3 },
		'scatter': { value: 0 },
		'width': { value: 1 },
		'height': { value: 1 },
		'blending': { value: 1 },
		'blendingMode': { value: 1 },
		'greyscale': { value: false },
		'disable': { value: false }
	},

	vertexShader: /* glsl */`

		varying vec2 vUV;

		void main() {

			vUV = uv;
			gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

		}`,

	fragmentShader: /* glsl */`

		#define SQRT2_MINUS_ONE 0.41421356
		#define SQRT2_HALF_MINUS_ONE 0.20710678
		#define PI2 6.28318531
		#define SHAPE_DOT 1
		#define SHAPE_ELLIPSE 2
		#define SHAPE_LINE 3
		#define SHAPE_SQUARE 4
		#define BLENDING_LINEAR 1
		#define BLENDING_MULTIPLY 2
		#define BLENDING_ADD 3
		#define BLENDING_LIGHTER 4
		#define BLENDING_DARKER 5
		uniform sampler2D tDiffuse;
		uniform float radius;
		uniform float rotateR;
		uniform float rotateG;
		uniform float rotateB;
		uniform float scatter;
		uniform float width;
		uniform float height;
		uniform int shape;
		uniform bool disable;
		uniform float blending;
		uniform int blendingMode;
		varying vec2 vUV;
		uniform bool greyscale;
		const int samples = 8;

		float blend( float a, float b, float t ) {

		// linear blend
			return a * ( 1.0 - t ) + b * t;

		}

		float hypot( float x, float y ) {

		// vector magnitude
			return sqrt( x * x + y * y );

		}

		float rand( vec2 seed ){

		// get pseudo-random number
			return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 );

		}

		float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) {

		// apply shape-specific transforms
			float dist = hypot( coord.x - p.x, coord.y - p.y );
			float rad = channel;

			if ( shape == SHAPE_DOT ) {

				rad = pow( abs( rad ), 1.125 ) * rad_max;

			} else if ( shape == SHAPE_ELLIPSE ) {

				rad = pow( abs( rad ), 1.125 ) * rad_max;

				if ( dist != 0.0 ) {
					float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y );
					dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE;
				}

			} else if ( shape == SHAPE_LINE ) {

				rad = pow( abs( rad ), 1.5) * rad_max;
				float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y;
				dist = hypot( normal.x * dot_p, normal.y * dot_p );

			} else if ( shape == SHAPE_SQUARE ) {

				float theta = atan( p.y - coord.y, p.x - coord.x ) - angle;
				float sin_t = abs( sin( theta ) );
				float cos_t = abs( cos( theta ) );
				rad = pow( abs( rad ), 1.4 );
				rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) );

			}

			return rad - dist;

		}

		struct Cell {

		// grid sample positions
			vec2 normal;
			vec2 p1;
			vec2 p2;
			vec2 p3;
			vec2 p4;
			float samp2;
			float samp1;
			float samp3;
			float samp4;

		};

		vec4 getSample( vec2 point ) {

		// multi-sampled point
			vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) );
			float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2;
			float step = PI2 / float( samples );
			float dist = radius * 0.66;

			for ( int i = 0; i < samples; ++i ) {

				float r = base + step * float( i );
				vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist );
				tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) );

			}

			tex /= float( samples ) + 1.0;
			return tex;

		}

		float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) {

		// get colour for given point
			float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res;

			if ( channel == 0 ) {

				c.samp1 = getSample( c.p1 ).r;
				c.samp2 = getSample( c.p2 ).r;
				c.samp3 = getSample( c.p3 ).r;
				c.samp4 = getSample( c.p4 ).r;

			} else if (channel == 1) {

				c.samp1 = getSample( c.p1 ).g;
				c.samp2 = getSample( c.p2 ).g;
				c.samp3 = getSample( c.p3 ).g;
				c.samp4 = getSample( c.p4 ).g;

			} else {

				c.samp1 = getSample( c.p1 ).b;
				c.samp3 = getSample( c.p3 ).b;
				c.samp2 = getSample( c.p2 ).b;
				c.samp4 = getSample( c.p4 ).b;

			}

			dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius );
			dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius );
			dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius );
			dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius );
			res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0;
			res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0;
			res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0;
			res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0;
			res = clamp( res, 0.0, 1.0 );

			return res;

		}

		Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) {

		// get containing cell
			Cell c;

		// calc grid
			vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) );
			float threshold = step * 0.5;
			float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y );
			float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y );
			vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal );
			float offset_normal = mod( hypot( offset.x, offset.y ), step );
			float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0;
			float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir;
			float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step );
			float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0;
			float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir;

		// get closest corner
			c.normal = n;
			c.p1.x = p.x - n.x * normal_scale + n.y * line_scale;
			c.p1.y = p.y - n.y * normal_scale - n.x * line_scale;

		// scatter
			if ( scatter != 0.0 ) {

				float off_mag = scatter * threshold * 0.5;
				float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2;
				c.p1.x += cos( off_angle ) * off_mag;
				c.p1.y += sin( off_angle ) * off_mag;

			}

		// find corners
			float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step );
			float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step );
			c.p2.x = c.p1.x - n.x * normal_step;
			c.p2.y = c.p1.y - n.y * normal_step;
			c.p3.x = c.p1.x + n.y * line_step;
			c.p3.y = c.p1.y - n.x * line_step;
			c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step;
			c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step;

			return c;

		}

		float blendColour( float a, float b, float t ) {

		// blend colours
			if ( blendingMode == BLENDING_LINEAR ) {
				return blend( a, b, 1.0 - t );
			} else if ( blendingMode == BLENDING_ADD ) {
				return blend( a, min( 1.0, a + b ), t );
			} else if ( blendingMode == BLENDING_MULTIPLY ) {
				return blend( a, max( 0.0, a * b ), t );
			} else if ( blendingMode == BLENDING_LIGHTER ) {
				return blend( a, max( a, b ), t );
			} else if ( blendingMode == BLENDING_DARKER ) {
				return blend( a, min( a, b ), t );
			} else {
				return blend( a, b, 1.0 - t );
			}

		}

		void main() {

			if ( ! disable ) {

		// setup
				vec2 p = vec2( vUV.x * width, vUV.y * height );
				vec2 origin = vec2( 0, 0 );
				float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25;

		// get channel samples
				Cell cell_r = getReferenceCell( p, origin, rotateR, radius );
				Cell cell_g = getReferenceCell( p, origin, rotateG, radius );
				Cell cell_b = getReferenceCell( p, origin, rotateB, radius );
				float r = getDotColour( cell_r, p, 0, rotateR, aa );
				float g = getDotColour( cell_g, p, 1, rotateG, aa );
				float b = getDotColour( cell_b, p, 2, rotateB, aa );

		// blend with original
				vec4 colour = texture2D( tDiffuse, vUV );
				r = blendColour( r, colour.r, blending );
				g = blendColour( g, colour.g, blending );
				b = blendColour( b, colour.b, blending );

				if ( greyscale ) {
					r = g = b = (r + b + g) / 3.0;
				}

				gl_FragColor = vec4( r, g, b, 1.0 );

			} else {

				gl_FragColor = texture2D( tDiffuse, vUV );

			}

		}`

};

export { HalftoneShader };