Spaces:
Running
Running
File size: 8,584 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
/**
* RGB Halftone shader for three.js.
* NOTE:
* Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square)
* Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker)
*/
const HalftoneShader = {
name: 'HalftoneShader',
uniforms: {
'tDiffuse': { value: null },
'shape': { value: 1 },
'radius': { value: 4 },
'rotateR': { value: Math.PI / 12 * 1 },
'rotateG': { value: Math.PI / 12 * 2 },
'rotateB': { value: Math.PI / 12 * 3 },
'scatter': { value: 0 },
'width': { value: 1 },
'height': { value: 1 },
'blending': { value: 1 },
'blendingMode': { value: 1 },
'greyscale': { value: false },
'disable': { value: false }
},
vertexShader: /* glsl */`
varying vec2 vUV;
void main() {
vUV = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}`,
fragmentShader: /* glsl */`
#define SQRT2_MINUS_ONE 0.41421356
#define SQRT2_HALF_MINUS_ONE 0.20710678
#define PI2 6.28318531
#define SHAPE_DOT 1
#define SHAPE_ELLIPSE 2
#define SHAPE_LINE 3
#define SHAPE_SQUARE 4
#define BLENDING_LINEAR 1
#define BLENDING_MULTIPLY 2
#define BLENDING_ADD 3
#define BLENDING_LIGHTER 4
#define BLENDING_DARKER 5
uniform sampler2D tDiffuse;
uniform float radius;
uniform float rotateR;
uniform float rotateG;
uniform float rotateB;
uniform float scatter;
uniform float width;
uniform float height;
uniform int shape;
uniform bool disable;
uniform float blending;
uniform int blendingMode;
varying vec2 vUV;
uniform bool greyscale;
const int samples = 8;
float blend( float a, float b, float t ) {
// linear blend
return a * ( 1.0 - t ) + b * t;
}
float hypot( float x, float y ) {
// vector magnitude
return sqrt( x * x + y * y );
}
float rand( vec2 seed ){
// get pseudo-random number
return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 );
}
float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) {
// apply shape-specific transforms
float dist = hypot( coord.x - p.x, coord.y - p.y );
float rad = channel;
if ( shape == SHAPE_DOT ) {
rad = pow( abs( rad ), 1.125 ) * rad_max;
} else if ( shape == SHAPE_ELLIPSE ) {
rad = pow( abs( rad ), 1.125 ) * rad_max;
if ( dist != 0.0 ) {
float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y );
dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE;
}
} else if ( shape == SHAPE_LINE ) {
rad = pow( abs( rad ), 1.5) * rad_max;
float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y;
dist = hypot( normal.x * dot_p, normal.y * dot_p );
} else if ( shape == SHAPE_SQUARE ) {
float theta = atan( p.y - coord.y, p.x - coord.x ) - angle;
float sin_t = abs( sin( theta ) );
float cos_t = abs( cos( theta ) );
rad = pow( abs( rad ), 1.4 );
rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) );
}
return rad - dist;
}
struct Cell {
// grid sample positions
vec2 normal;
vec2 p1;
vec2 p2;
vec2 p3;
vec2 p4;
float samp2;
float samp1;
float samp3;
float samp4;
};
vec4 getSample( vec2 point ) {
// multi-sampled point
vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) );
float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2;
float step = PI2 / float( samples );
float dist = radius * 0.66;
for ( int i = 0; i < samples; ++i ) {
float r = base + step * float( i );
vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist );
tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) );
}
tex /= float( samples ) + 1.0;
return tex;
}
float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) {
// get colour for given point
float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res;
if ( channel == 0 ) {
c.samp1 = getSample( c.p1 ).r;
c.samp2 = getSample( c.p2 ).r;
c.samp3 = getSample( c.p3 ).r;
c.samp4 = getSample( c.p4 ).r;
} else if (channel == 1) {
c.samp1 = getSample( c.p1 ).g;
c.samp2 = getSample( c.p2 ).g;
c.samp3 = getSample( c.p3 ).g;
c.samp4 = getSample( c.p4 ).g;
} else {
c.samp1 = getSample( c.p1 ).b;
c.samp3 = getSample( c.p3 ).b;
c.samp2 = getSample( c.p2 ).b;
c.samp4 = getSample( c.p4 ).b;
}
dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius );
dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius );
dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius );
dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius );
res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0;
res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0;
res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0;
res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0;
res = clamp( res, 0.0, 1.0 );
return res;
}
Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) {
// get containing cell
Cell c;
// calc grid
vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) );
float threshold = step * 0.5;
float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y );
float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y );
vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal );
float offset_normal = mod( hypot( offset.x, offset.y ), step );
float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0;
float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir;
float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step );
float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0;
float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir;
// get closest corner
c.normal = n;
c.p1.x = p.x - n.x * normal_scale + n.y * line_scale;
c.p1.y = p.y - n.y * normal_scale - n.x * line_scale;
// scatter
if ( scatter != 0.0 ) {
float off_mag = scatter * threshold * 0.5;
float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2;
c.p1.x += cos( off_angle ) * off_mag;
c.p1.y += sin( off_angle ) * off_mag;
}
// find corners
float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step );
float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step );
c.p2.x = c.p1.x - n.x * normal_step;
c.p2.y = c.p1.y - n.y * normal_step;
c.p3.x = c.p1.x + n.y * line_step;
c.p3.y = c.p1.y - n.x * line_step;
c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step;
c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step;
return c;
}
float blendColour( float a, float b, float t ) {
// blend colours
if ( blendingMode == BLENDING_LINEAR ) {
return blend( a, b, 1.0 - t );
} else if ( blendingMode == BLENDING_ADD ) {
return blend( a, min( 1.0, a + b ), t );
} else if ( blendingMode == BLENDING_MULTIPLY ) {
return blend( a, max( 0.0, a * b ), t );
} else if ( blendingMode == BLENDING_LIGHTER ) {
return blend( a, max( a, b ), t );
} else if ( blendingMode == BLENDING_DARKER ) {
return blend( a, min( a, b ), t );
} else {
return blend( a, b, 1.0 - t );
}
}
void main() {
if ( ! disable ) {
// setup
vec2 p = vec2( vUV.x * width, vUV.y * height );
vec2 origin = vec2( 0, 0 );
float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25;
// get channel samples
Cell cell_r = getReferenceCell( p, origin, rotateR, radius );
Cell cell_g = getReferenceCell( p, origin, rotateG, radius );
Cell cell_b = getReferenceCell( p, origin, rotateB, radius );
float r = getDotColour( cell_r, p, 0, rotateR, aa );
float g = getDotColour( cell_g, p, 1, rotateG, aa );
float b = getDotColour( cell_b, p, 2, rotateB, aa );
// blend with original
vec4 colour = texture2D( tDiffuse, vUV );
r = blendColour( r, colour.r, blending );
g = blendColour( g, colour.g, blending );
b = blendColour( b, colour.b, blending );
if ( greyscale ) {
r = g = b = (r + b + g) / 3.0;
}
gl_FragColor = vec4( r, g, b, 1.0 );
} else {
gl_FragColor = texture2D( tDiffuse, vUV );
}
}`
};
export { HalftoneShader };
|