Spaces:
Running
Running
File size: 5,308 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import {
DirectionalLight,
Group,
LightProbe,
WebGLCubeRenderTarget
} from 'three';
class SessionLightProbe {
constructor( xrLight, renderer, lightProbe, environmentEstimation, estimationStartCallback ) {
this.xrLight = xrLight;
this.renderer = renderer;
this.lightProbe = lightProbe;
this.xrWebGLBinding = null;
this.estimationStartCallback = estimationStartCallback;
this.frameCallback = this.onXRFrame.bind( this );
const session = renderer.xr.getSession();
// If the XRWebGLBinding class is available then we can also query an
// estimated reflection cube map.
if ( environmentEstimation && 'XRWebGLBinding' in window ) {
// This is the simplest way I know of to initialize a WebGL cubemap in Three.
const cubeRenderTarget = new WebGLCubeRenderTarget( 16 );
xrLight.environment = cubeRenderTarget.texture;
const gl = renderer.getContext();
// Ensure that we have any extensions needed to use the preferred cube map format.
switch ( session.preferredReflectionFormat ) {
case 'srgba8':
gl.getExtension( 'EXT_sRGB' );
break;
case 'rgba16f':
gl.getExtension( 'OES_texture_half_float' );
break;
}
this.xrWebGLBinding = new XRWebGLBinding( session, gl );
this.lightProbe.addEventListener( 'reflectionchange', () => {
this.updateReflection();
} );
}
// Start monitoring the XR animation frame loop to look for lighting
// estimation changes.
session.requestAnimationFrame( this.frameCallback );
}
updateReflection() {
const textureProperties = this.renderer.properties.get( this.xrLight.environment );
if ( textureProperties ) {
const cubeMap = this.xrWebGLBinding.getReflectionCubeMap( this.lightProbe );
if ( cubeMap ) {
textureProperties.__webglTexture = cubeMap;
this.xrLight.environment.needsPMREMUpdate = true;
}
}
}
onXRFrame( time, xrFrame ) {
// If either this object or the XREstimatedLight has been destroyed, stop
// running the frame loop.
if ( ! this.xrLight ) {
return;
}
const session = xrFrame.session;
session.requestAnimationFrame( this.frameCallback );
const lightEstimate = xrFrame.getLightEstimate( this.lightProbe );
if ( lightEstimate ) {
// We can copy the estimate's spherical harmonics array directly into the light probe.
this.xrLight.lightProbe.sh.fromArray( lightEstimate.sphericalHarmonicsCoefficients );
this.xrLight.lightProbe.intensity = 1.0;
// For the directional light we have to normalize the color and set the scalar as the
// intensity, since WebXR can return color values that exceed 1.0.
const intensityScalar = Math.max( 1.0,
Math.max( lightEstimate.primaryLightIntensity.x,
Math.max( lightEstimate.primaryLightIntensity.y,
lightEstimate.primaryLightIntensity.z ) ) );
this.xrLight.directionalLight.color.setRGB(
lightEstimate.primaryLightIntensity.x / intensityScalar,
lightEstimate.primaryLightIntensity.y / intensityScalar,
lightEstimate.primaryLightIntensity.z / intensityScalar );
this.xrLight.directionalLight.intensity = intensityScalar;
this.xrLight.directionalLight.position.copy( lightEstimate.primaryLightDirection );
if ( this.estimationStartCallback ) {
this.estimationStartCallback();
this.estimationStartCallback = null;
}
}
}
dispose() {
this.xrLight = null;
this.renderer = null;
this.lightProbe = null;
this.xrWebGLBinding = null;
}
}
export class XREstimatedLight extends Group {
constructor( renderer, environmentEstimation = true ) {
super();
this.lightProbe = new LightProbe();
this.lightProbe.intensity = 0;
this.add( this.lightProbe );
this.directionalLight = new DirectionalLight();
this.directionalLight.intensity = 0;
this.add( this.directionalLight );
// Will be set to a cube map in the SessionLightProbe if environment estimation is
// available and requested.
this.environment = null;
let sessionLightProbe = null;
let estimationStarted = false;
renderer.xr.addEventListener( 'sessionstart', () => {
const session = renderer.xr.getSession();
if ( 'requestLightProbe' in session ) {
session.requestLightProbe( {
reflectionFormat: session.preferredReflectionFormat
} ).then( ( probe ) => {
sessionLightProbe = new SessionLightProbe( this, renderer, probe, environmentEstimation, () => {
estimationStarted = true;
// Fired to indicate that the estimated lighting values are now being updated.
this.dispatchEvent( { type: 'estimationstart' } );
} );
} );
}
} );
renderer.xr.addEventListener( 'sessionend', () => {
if ( sessionLightProbe ) {
sessionLightProbe.dispose();
sessionLightProbe = null;
}
if ( estimationStarted ) {
// Fired to indicate that the estimated lighting values are no longer being updated.
this.dispatchEvent( { type: 'estimationend' } );
}
} );
// Done inline to provide access to sessionLightProbe.
this.dispose = () => {
if ( sessionLightProbe ) {
sessionLightProbe.dispose();
sessionLightProbe = null;
}
this.remove( this.lightProbe );
this.lightProbe = null;
this.remove( this.directionalLight );
this.directionalLight = null;
this.environment = null;
};
}
}
|