Spaces:
Running
Running
/** | |
* Octahedron and Quantization encodings based on work by: | |
* | |
* @link https://github.com/tsherif/mesh-quantization-example | |
* | |
*/ | |
import { | |
BufferAttribute, | |
Matrix3, | |
Matrix4, | |
Vector3 | |
} from 'three'; | |
/** | |
* Make the input geometry's normal attribute encoded and compressed by 3 different methods. | |
* | |
* @param {THREE.BufferGeometry} geometry | |
* @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES" | |
* | |
*/ | |
function compressNormals( geometry, encodeMethod ) { | |
const normal = geometry.attributes.normal; | |
if ( ! normal ) { | |
console.error( 'Geometry must contain normal attribute. ' ); | |
} | |
if ( normal.isPacked ) return; | |
if ( normal.itemSize != 3 ) { | |
console.error( 'normal.itemSize is not 3, which cannot be encoded. ' ); | |
} | |
const array = normal.array; | |
const count = normal.count; | |
let result; | |
if ( encodeMethod == 'DEFAULT' ) { | |
// TODO: Add 1 byte to the result, making the encoded length to be 4 bytes. | |
result = new Uint8Array( count * 3 ); | |
for ( let idx = 0; idx < array.length; idx += 3 ) { | |
const encoded = defaultEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 ); | |
result[ idx + 0 ] = encoded[ 0 ]; | |
result[ idx + 1 ] = encoded[ 1 ]; | |
result[ idx + 2 ] = encoded[ 2 ]; | |
} | |
geometry.setAttribute( 'normal', new BufferAttribute( result, 3, true ) ); | |
geometry.attributes.normal.bytes = result.length * 1; | |
} else if ( encodeMethod == 'OCT1Byte' ) { | |
/** | |
* It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage | |
* As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible | |
* Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208 | |
*/ | |
result = new Int8Array( count * 2 ); | |
for ( let idx = 0; idx < array.length; idx += 3 ) { | |
const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 ); | |
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ]; | |
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ]; | |
} | |
geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) ); | |
geometry.attributes.normal.bytes = result.length * 1; | |
} else if ( encodeMethod == 'OCT2Byte' ) { | |
result = new Int16Array( count * 2 ); | |
for ( let idx = 0; idx < array.length; idx += 3 ) { | |
const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 2 ); | |
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ]; | |
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ]; | |
} | |
geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) ); | |
geometry.attributes.normal.bytes = result.length * 2; | |
} else if ( encodeMethod == 'ANGLES' ) { | |
result = new Uint16Array( count * 2 ); | |
for ( let idx = 0; idx < array.length; idx += 3 ) { | |
const encoded = anglesEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ] ); | |
result[ idx / 3 * 2 + 0 ] = encoded[ 0 ]; | |
result[ idx / 3 * 2 + 1 ] = encoded[ 1 ]; | |
} | |
geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) ); | |
geometry.attributes.normal.bytes = result.length * 2; | |
} else { | |
console.error( 'Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ' ); | |
} | |
geometry.attributes.normal.needsUpdate = true; | |
geometry.attributes.normal.isPacked = true; | |
geometry.attributes.normal.packingMethod = encodeMethod; | |
} | |
/** | |
* Make the input geometry's position attribute encoded and compressed. | |
* | |
* @param {THREE.BufferGeometry} geometry | |
* | |
*/ | |
function compressPositions( geometry ) { | |
const position = geometry.attributes.position; | |
if ( ! position ) { | |
console.error( 'Geometry must contain position attribute. ' ); | |
} | |
if ( position.isPacked ) return; | |
if ( position.itemSize != 3 ) { | |
console.error( 'position.itemSize is not 3, which cannot be packed. ' ); | |
} | |
const array = position.array; | |
const encodingBytes = 2; | |
const result = quantizedEncode( array, encodingBytes ); | |
const quantized = result.quantized; | |
// IMPORTANT: calculate original geometry bounding info first, before updating packed positions | |
if ( geometry.boundingBox == null ) geometry.computeBoundingBox(); | |
if ( geometry.boundingSphere == null ) geometry.computeBoundingSphere(); | |
geometry.setAttribute( 'position', new BufferAttribute( quantized, 3 ) ); | |
geometry.attributes.position.isPacked = true; | |
geometry.attributes.position.needsUpdate = true; | |
geometry.attributes.position.bytes = quantized.length * encodingBytes; | |
} | |
/** | |
* Make the input geometry's uv attribute encoded and compressed. | |
* | |
* @param {THREE.BufferGeometry} geometry | |
* | |
*/ | |
function compressUvs( geometry ) { | |
const uvs = geometry.attributes.uv; | |
if ( ! uvs ) { | |
console.error( 'Geometry must contain uv attribute. ' ); | |
} | |
if ( uvs.isPacked ) return; | |
const range = { min: Infinity, max: - Infinity }; | |
const array = uvs.array; | |
for ( let i = 0; i < array.length; i ++ ) { | |
range.min = Math.min( range.min, array[ i ] ); | |
range.max = Math.max( range.max, array[ i ] ); | |
} | |
let result; | |
if ( range.min >= - 1.0 && range.max <= 1.0 ) { | |
// use default encoding method | |
result = new Uint16Array( array.length ); | |
for ( let i = 0; i < array.length; i += 2 ) { | |
const encoded = defaultEncode( array[ i ], array[ i + 1 ], 0, 2 ); | |
result[ i ] = encoded[ 0 ]; | |
result[ i + 1 ] = encoded[ 1 ]; | |
} | |
geometry.setAttribute( 'uv', new BufferAttribute( result, 2, true ) ); | |
geometry.attributes.uv.isPacked = true; | |
geometry.attributes.uv.needsUpdate = true; | |
geometry.attributes.uv.bytes = result.length * 2; | |
} else { | |
// use quantized encoding method | |
result = quantizedEncodeUV( array, 2 ); | |
geometry.setAttribute( 'uv', new BufferAttribute( result.quantized, 2 ) ); | |
geometry.attributes.uv.isPacked = true; | |
geometry.attributes.uv.needsUpdate = true; | |
geometry.attributes.uv.bytes = result.quantized.length * 2; | |
} | |
} | |
// Encoding functions | |
function defaultEncode( x, y, z, bytes ) { | |
if ( bytes == 1 ) { | |
const tmpx = Math.round( ( x + 1 ) * 0.5 * 255 ); | |
const tmpy = Math.round( ( y + 1 ) * 0.5 * 255 ); | |
const tmpz = Math.round( ( z + 1 ) * 0.5 * 255 ); | |
return new Uint8Array( [ tmpx, tmpy, tmpz ] ); | |
} else if ( bytes == 2 ) { | |
const tmpx = Math.round( ( x + 1 ) * 0.5 * 65535 ); | |
const tmpy = Math.round( ( y + 1 ) * 0.5 * 65535 ); | |
const tmpz = Math.round( ( z + 1 ) * 0.5 * 65535 ); | |
return new Uint16Array( [ tmpx, tmpy, tmpz ] ); | |
} else { | |
console.error( 'number of bytes must be 1 or 2' ); | |
} | |
} | |
// for `Angles` encoding | |
function anglesEncode( x, y, z ) { | |
const normal0 = parseInt( 0.5 * ( 1.0 + Math.atan2( y, x ) / Math.PI ) * 65535 ); | |
const normal1 = parseInt( 0.5 * ( 1.0 + z ) * 65535 ); | |
return new Uint16Array( [ normal0, normal1 ] ); | |
} | |
// for `Octahedron` encoding | |
function octEncodeBest( x, y, z, bytes ) { | |
let oct, dec, best, currentCos, bestCos; | |
// Test various combinations of ceil and floor | |
// to minimize rounding errors | |
best = oct = octEncodeVec3( x, y, z, 'floor', 'floor' ); | |
dec = octDecodeVec2( oct ); | |
bestCos = dot( x, y, z, dec ); | |
oct = octEncodeVec3( x, y, z, 'ceil', 'floor' ); | |
dec = octDecodeVec2( oct ); | |
currentCos = dot( x, y, z, dec ); | |
if ( currentCos > bestCos ) { | |
best = oct; | |
bestCos = currentCos; | |
} | |
oct = octEncodeVec3( x, y, z, 'floor', 'ceil' ); | |
dec = octDecodeVec2( oct ); | |
currentCos = dot( x, y, z, dec ); | |
if ( currentCos > bestCos ) { | |
best = oct; | |
bestCos = currentCos; | |
} | |
oct = octEncodeVec3( x, y, z, 'ceil', 'ceil' ); | |
dec = octDecodeVec2( oct ); | |
currentCos = dot( x, y, z, dec ); | |
if ( currentCos > bestCos ) { | |
best = oct; | |
} | |
return best; | |
function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) { | |
let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) ); | |
let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) ); | |
if ( z < 0 ) { | |
const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 ); | |
const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 ); | |
x = tempx; | |
y = tempy; | |
let diff = 1 - Math.abs( x ) - Math.abs( y ); | |
if ( diff > 0 ) { | |
diff += 0.001; | |
x += x > 0 ? diff / 2 : - diff / 2; | |
y += y > 0 ? diff / 2 : - diff / 2; | |
} | |
} | |
if ( bytes == 1 ) { | |
return new Int8Array( [ | |
Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ), | |
Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) ) | |
] ); | |
} | |
if ( bytes == 2 ) { | |
return new Int16Array( [ | |
Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ), | |
Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) ) | |
] ); | |
} | |
} | |
function octDecodeVec2( oct ) { | |
let x = oct[ 0 ]; | |
let y = oct[ 1 ]; | |
if ( bytes == 1 ) { | |
x /= x < 0 ? 127 : 128; | |
y /= y < 0 ? 127 : 128; | |
} else if ( bytes == 2 ) { | |
x /= x < 0 ? 32767 : 32768; | |
y /= y < 0 ? 32767 : 32768; | |
} | |
const z = 1 - Math.abs( x ) - Math.abs( y ); | |
if ( z < 0 ) { | |
const tmpx = x; | |
x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 ); | |
y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 ); | |
} | |
const length = Math.sqrt( x * x + y * y + z * z ); | |
return [ | |
x / length, | |
y / length, | |
z / length | |
]; | |
} | |
function dot( x, y, z, vec3 ) { | |
return x * vec3[ 0 ] + y * vec3[ 1 ] + z * vec3[ 2 ]; | |
} | |
} | |
function quantizedEncode( array, bytes ) { | |
let quantized, segments; | |
if ( bytes == 1 ) { | |
quantized = new Uint8Array( array.length ); | |
segments = 255; | |
} else if ( bytes == 2 ) { | |
quantized = new Uint16Array( array.length ); | |
segments = 65535; | |
} else { | |
console.error( 'number of bytes error! ' ); | |
} | |
const decodeMat = new Matrix4(); | |
const min = new Float32Array( 3 ); | |
const max = new Float32Array( 3 ); | |
min[ 0 ] = min[ 1 ] = min[ 2 ] = Number.MAX_VALUE; | |
max[ 0 ] = max[ 1 ] = max[ 2 ] = - Number.MAX_VALUE; | |
for ( let i = 0; i < array.length; i += 3 ) { | |
min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] ); | |
min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] ); | |
min[ 2 ] = Math.min( min[ 2 ], array[ i + 2 ] ); | |
max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] ); | |
max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] ); | |
max[ 2 ] = Math.max( max[ 2 ], array[ i + 2 ] ); | |
} | |
decodeMat.scale( new Vector3( | |
( max[ 0 ] - min[ 0 ] ) / segments, | |
( max[ 1 ] - min[ 1 ] ) / segments, | |
( max[ 2 ] - min[ 2 ] ) / segments | |
) ); | |
decodeMat.elements[ 12 ] = min[ 0 ]; | |
decodeMat.elements[ 13 ] = min[ 1 ]; | |
decodeMat.elements[ 14 ] = min[ 2 ]; | |
decodeMat.transpose(); | |
const multiplier = new Float32Array( [ | |
max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, | |
max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0, | |
max[ 2 ] !== min[ 2 ] ? segments / ( max[ 2 ] - min[ 2 ] ) : 0 | |
] ); | |
for ( let i = 0; i < array.length; i += 3 ) { | |
quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] ); | |
quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] ); | |
quantized[ i + 2 ] = Math.floor( ( array[ i + 2 ] - min[ 2 ] ) * multiplier[ 2 ] ); | |
} | |
return { | |
quantized: quantized, | |
decodeMat: decodeMat | |
}; | |
} | |
function quantizedEncodeUV( array, bytes ) { | |
let quantized, segments; | |
if ( bytes == 1 ) { | |
quantized = new Uint8Array( array.length ); | |
segments = 255; | |
} else if ( bytes == 2 ) { | |
quantized = new Uint16Array( array.length ); | |
segments = 65535; | |
} else { | |
console.error( 'number of bytes error! ' ); | |
} | |
const decodeMat = new Matrix3(); | |
const min = new Float32Array( 2 ); | |
const max = new Float32Array( 2 ); | |
min[ 0 ] = min[ 1 ] = Number.MAX_VALUE; | |
max[ 0 ] = max[ 1 ] = - Number.MAX_VALUE; | |
for ( let i = 0; i < array.length; i += 2 ) { | |
min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] ); | |
min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] ); | |
max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] ); | |
max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] ); | |
} | |
decodeMat.scale( | |
( max[ 0 ] - min[ 0 ] ) / segments, | |
( max[ 1 ] - min[ 1 ] ) / segments | |
); | |
decodeMat.elements[ 6 ] = min[ 0 ]; | |
decodeMat.elements[ 7 ] = min[ 1 ]; | |
decodeMat.transpose(); | |
const multiplier = new Float32Array( [ | |
max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0, | |
max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0 | |
] ); | |
for ( let i = 0; i < array.length; i += 2 ) { | |
quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] ); | |
quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] ); | |
} | |
return { | |
quantized: quantized, | |
decodeMat: decodeMat | |
}; | |
} | |
export { | |
compressNormals, | |
compressPositions, | |
compressUvs, | |
}; | |