Spaces:
Running
Running
import { | |
Vector3, | |
Vector4 | |
} from 'three'; | |
/** | |
* NURBS utils | |
* | |
* See NURBSCurve and NURBSSurface. | |
**/ | |
/************************************************************** | |
* NURBS Utils | |
**************************************************************/ | |
/* | |
Finds knot vector span. | |
p : degree | |
u : parametric value | |
U : knot vector | |
returns the span | |
*/ | |
function findSpan( p, u, U ) { | |
const n = U.length - p - 1; | |
if ( u >= U[ n ] ) { | |
return n - 1; | |
} | |
if ( u <= U[ p ] ) { | |
return p; | |
} | |
let low = p; | |
let high = n; | |
let mid = Math.floor( ( low + high ) / 2 ); | |
while ( u < U[ mid ] || u >= U[ mid + 1 ] ) { | |
if ( u < U[ mid ] ) { | |
high = mid; | |
} else { | |
low = mid; | |
} | |
mid = Math.floor( ( low + high ) / 2 ); | |
} | |
return mid; | |
} | |
/* | |
Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2 | |
span : span in which u lies | |
u : parametric point | |
p : degree | |
U : knot vector | |
returns array[p+1] with basis functions values. | |
*/ | |
function calcBasisFunctions( span, u, p, U ) { | |
const N = []; | |
const left = []; | |
const right = []; | |
N[ 0 ] = 1.0; | |
for ( let j = 1; j <= p; ++ j ) { | |
left[ j ] = u - U[ span + 1 - j ]; | |
right[ j ] = U[ span + j ] - u; | |
let saved = 0.0; | |
for ( let r = 0; r < j; ++ r ) { | |
const rv = right[ r + 1 ]; | |
const lv = left[ j - r ]; | |
const temp = N[ r ] / ( rv + lv ); | |
N[ r ] = saved + rv * temp; | |
saved = lv * temp; | |
} | |
N[ j ] = saved; | |
} | |
return N; | |
} | |
/* | |
Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1. | |
p : degree of B-Spline | |
U : knot vector | |
P : control points (x, y, z, w) | |
u : parametric point | |
returns point for given u | |
*/ | |
function calcBSplinePoint( p, U, P, u ) { | |
const span = findSpan( p, u, U ); | |
const N = calcBasisFunctions( span, u, p, U ); | |
const C = new Vector4( 0, 0, 0, 0 ); | |
for ( let j = 0; j <= p; ++ j ) { | |
const point = P[ span - p + j ]; | |
const Nj = N[ j ]; | |
const wNj = point.w * Nj; | |
C.x += point.x * wNj; | |
C.y += point.y * wNj; | |
C.z += point.z * wNj; | |
C.w += point.w * Nj; | |
} | |
return C; | |
} | |
/* | |
Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3. | |
span : span in which u lies | |
u : parametric point | |
p : degree | |
n : number of derivatives to calculate | |
U : knot vector | |
returns array[n+1][p+1] with basis functions derivatives | |
*/ | |
function calcBasisFunctionDerivatives( span, u, p, n, U ) { | |
const zeroArr = []; | |
for ( let i = 0; i <= p; ++ i ) | |
zeroArr[ i ] = 0.0; | |
const ders = []; | |
for ( let i = 0; i <= n; ++ i ) | |
ders[ i ] = zeroArr.slice( 0 ); | |
const ndu = []; | |
for ( let i = 0; i <= p; ++ i ) | |
ndu[ i ] = zeroArr.slice( 0 ); | |
ndu[ 0 ][ 0 ] = 1.0; | |
const left = zeroArr.slice( 0 ); | |
const right = zeroArr.slice( 0 ); | |
for ( let j = 1; j <= p; ++ j ) { | |
left[ j ] = u - U[ span + 1 - j ]; | |
right[ j ] = U[ span + j ] - u; | |
let saved = 0.0; | |
for ( let r = 0; r < j; ++ r ) { | |
const rv = right[ r + 1 ]; | |
const lv = left[ j - r ]; | |
ndu[ j ][ r ] = rv + lv; | |
const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ]; | |
ndu[ r ][ j ] = saved + rv * temp; | |
saved = lv * temp; | |
} | |
ndu[ j ][ j ] = saved; | |
} | |
for ( let j = 0; j <= p; ++ j ) { | |
ders[ 0 ][ j ] = ndu[ j ][ p ]; | |
} | |
for ( let r = 0; r <= p; ++ r ) { | |
let s1 = 0; | |
let s2 = 1; | |
const a = []; | |
for ( let i = 0; i <= p; ++ i ) { | |
a[ i ] = zeroArr.slice( 0 ); | |
} | |
a[ 0 ][ 0 ] = 1.0; | |
for ( let k = 1; k <= n; ++ k ) { | |
let d = 0.0; | |
const rk = r - k; | |
const pk = p - k; | |
if ( r >= k ) { | |
a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ]; | |
d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ]; | |
} | |
const j1 = ( rk >= - 1 ) ? 1 : - rk; | |
const j2 = ( r - 1 <= pk ) ? k - 1 : p - r; | |
for ( let j = j1; j <= j2; ++ j ) { | |
a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ]; | |
d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ]; | |
} | |
if ( r <= pk ) { | |
a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ]; | |
d += a[ s2 ][ k ] * ndu[ r ][ pk ]; | |
} | |
ders[ k ][ r ] = d; | |
const j = s1; | |
s1 = s2; | |
s2 = j; | |
} | |
} | |
let r = p; | |
for ( let k = 1; k <= n; ++ k ) { | |
for ( let j = 0; j <= p; ++ j ) { | |
ders[ k ][ j ] *= r; | |
} | |
r *= p - k; | |
} | |
return ders; | |
} | |
/* | |
Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2. | |
p : degree | |
U : knot vector | |
P : control points | |
u : Parametric points | |
nd : number of derivatives | |
returns array[d+1] with derivatives | |
*/ | |
function calcBSplineDerivatives( p, U, P, u, nd ) { | |
const du = nd < p ? nd : p; | |
const CK = []; | |
const span = findSpan( p, u, U ); | |
const nders = calcBasisFunctionDerivatives( span, u, p, du, U ); | |
const Pw = []; | |
for ( let i = 0; i < P.length; ++ i ) { | |
const point = P[ i ].clone(); | |
const w = point.w; | |
point.x *= w; | |
point.y *= w; | |
point.z *= w; | |
Pw[ i ] = point; | |
} | |
for ( let k = 0; k <= du; ++ k ) { | |
const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] ); | |
for ( let j = 1; j <= p; ++ j ) { | |
point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) ); | |
} | |
CK[ k ] = point; | |
} | |
for ( let k = du + 1; k <= nd + 1; ++ k ) { | |
CK[ k ] = new Vector4( 0, 0, 0 ); | |
} | |
return CK; | |
} | |
/* | |
Calculate "K over I" | |
returns k!/(i!(k-i)!) | |
*/ | |
function calcKoverI( k, i ) { | |
let nom = 1; | |
for ( let j = 2; j <= k; ++ j ) { | |
nom *= j; | |
} | |
let denom = 1; | |
for ( let j = 2; j <= i; ++ j ) { | |
denom *= j; | |
} | |
for ( let j = 2; j <= k - i; ++ j ) { | |
denom *= j; | |
} | |
return nom / denom; | |
} | |
/* | |
Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2. | |
Pders : result of function calcBSplineDerivatives | |
returns array with derivatives for rational curve. | |
*/ | |
function calcRationalCurveDerivatives( Pders ) { | |
const nd = Pders.length; | |
const Aders = []; | |
const wders = []; | |
for ( let i = 0; i < nd; ++ i ) { | |
const point = Pders[ i ]; | |
Aders[ i ] = new Vector3( point.x, point.y, point.z ); | |
wders[ i ] = point.w; | |
} | |
const CK = []; | |
for ( let k = 0; k < nd; ++ k ) { | |
const v = Aders[ k ].clone(); | |
for ( let i = 1; i <= k; ++ i ) { | |
v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) ); | |
} | |
CK[ k ] = v.divideScalar( wders[ 0 ] ); | |
} | |
return CK; | |
} | |
/* | |
Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2. | |
p : degree | |
U : knot vector | |
P : control points in homogeneous space | |
u : parametric points | |
nd : number of derivatives | |
returns array with derivatives. | |
*/ | |
function calcNURBSDerivatives( p, U, P, u, nd ) { | |
const Pders = calcBSplineDerivatives( p, U, P, u, nd ); | |
return calcRationalCurveDerivatives( Pders ); | |
} | |
/* | |
Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3. | |
p, q : degrees of B-Spline surface | |
U, V : knot vectors | |
P : control points (x, y, z, w) | |
u, v : parametric values | |
returns point for given (u, v) | |
*/ | |
function calcSurfacePoint( p, q, U, V, P, u, v, target ) { | |
const uspan = findSpan( p, u, U ); | |
const vspan = findSpan( q, v, V ); | |
const Nu = calcBasisFunctions( uspan, u, p, U ); | |
const Nv = calcBasisFunctions( vspan, v, q, V ); | |
const temp = []; | |
for ( let l = 0; l <= q; ++ l ) { | |
temp[ l ] = new Vector4( 0, 0, 0, 0 ); | |
for ( let k = 0; k <= p; ++ k ) { | |
const point = P[ uspan - p + k ][ vspan - q + l ].clone(); | |
const w = point.w; | |
point.x *= w; | |
point.y *= w; | |
point.z *= w; | |
temp[ l ].add( point.multiplyScalar( Nu[ k ] ) ); | |
} | |
} | |
const Sw = new Vector4( 0, 0, 0, 0 ); | |
for ( let l = 0; l <= q; ++ l ) { | |
Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) ); | |
} | |
Sw.divideScalar( Sw.w ); | |
target.set( Sw.x, Sw.y, Sw.z ); | |
} | |
/* | |
Calculate rational B-Spline volume point. See The NURBS Book, page 134, algorithm A4.3. | |
p, q, r : degrees of B-Splinevolume | |
U, V, W : knot vectors | |
P : control points (x, y, z, w) | |
u, v, w : parametric values | |
returns point for given (u, v, w) | |
*/ | |
function calcVolumePoint( p, q, r, U, V, W, P, u, v, w, target ) { | |
const uspan = findSpan( p, u, U ); | |
const vspan = findSpan( q, v, V ); | |
const wspan = findSpan( r, w, W ); | |
const Nu = calcBasisFunctions( uspan, u, p, U ); | |
const Nv = calcBasisFunctions( vspan, v, q, V ); | |
const Nw = calcBasisFunctions( wspan, w, r, W ); | |
const temp = []; | |
for ( let m = 0; m <= r; ++ m ) { | |
temp[ m ] = []; | |
for ( let l = 0; l <= q; ++ l ) { | |
temp[ m ][ l ] = new Vector4( 0, 0, 0, 0 ); | |
for ( let k = 0; k <= p; ++ k ) { | |
const point = P[ uspan - p + k ][ vspan - q + l ][ wspan - r + m ].clone(); | |
const w = point.w; | |
point.x *= w; | |
point.y *= w; | |
point.z *= w; | |
temp[ m ][ l ].add( point.multiplyScalar( Nu[ k ] ) ); | |
} | |
} | |
} | |
const Sw = new Vector4( 0, 0, 0, 0 ); | |
for ( let m = 0; m <= r; ++ m ) { | |
for ( let l = 0; l <= q; ++ l ) { | |
Sw.add( temp[ m ][ l ].multiplyScalar( Nw[ m ] ).multiplyScalar( Nv[ l ] ) ); | |
} | |
} | |
Sw.divideScalar( Sw.w ); | |
target.set( Sw.x, Sw.y, Sw.z ); | |
} | |
export { | |
findSpan, | |
calcBasisFunctions, | |
calcBSplinePoint, | |
calcBasisFunctionDerivatives, | |
calcBSplineDerivatives, | |
calcKoverI, | |
calcRationalCurveDerivatives, | |
calcNURBSDerivatives, | |
calcSurfacePoint, | |
calcVolumePoint, | |
}; | |