Spaces:
Running
Running
import { | |
DataTextureLoader, | |
DataUtils, | |
FloatType, | |
HalfFloatType, | |
NoColorSpace, | |
LinearFilter, | |
LinearSRGBColorSpace, | |
RedFormat, | |
RGBAFormat | |
} from 'three'; | |
import * as fflate from '../libs/fflate.module.js'; | |
/** | |
* OpenEXR loader currently supports uncompressed, ZIP(S), RLE, PIZ and DWA/B compression. | |
* Supports reading as UnsignedByte, HalfFloat and Float type data texture. | |
* | |
* Referred to the original Industrial Light & Magic OpenEXR implementation and the TinyEXR / Syoyo Fujita | |
* implementation, so I have preserved their copyright notices. | |
*/ | |
// /* | |
// Copyright (c) 2014 - 2017, Syoyo Fujita | |
// All rights reserved. | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are met: | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above copyright | |
// notice, this list of conditions and the following disclaimer in the | |
// documentation and/or other materials provided with the distribution. | |
// * Neither the name of the Syoyo Fujita nor the | |
// names of its contributors may be used to endorse or promote products | |
// derived from this software without specific prior written permission. | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | |
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
// DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY | |
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
// */ | |
// // TinyEXR contains some OpenEXR code, which is licensed under ------------ | |
// /////////////////////////////////////////////////////////////////////////// | |
// // | |
// // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas | |
// // Digital Ltd. LLC | |
// // | |
// // All rights reserved. | |
// // | |
// // Redistribution and use in source and binary forms, with or without | |
// // modification, are permitted provided that the following conditions are | |
// // met: | |
// // * Redistributions of source code must retain the above copyright | |
// // notice, this list of conditions and the following disclaimer. | |
// // * Redistributions in binary form must reproduce the above | |
// // copyright notice, this list of conditions and the following disclaimer | |
// // in the documentation and/or other materials provided with the | |
// // distribution. | |
// // * Neither the name of Industrial Light & Magic nor the names of | |
// // its contributors may be used to endorse or promote products derived | |
// // from this software without specific prior written permission. | |
// // | |
// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
// // | |
// /////////////////////////////////////////////////////////////////////////// | |
// // End of OpenEXR license ------------------------------------------------- | |
class EXRLoader extends DataTextureLoader { | |
constructor( manager ) { | |
super( manager ); | |
this.type = HalfFloatType; | |
} | |
parse( buffer ) { | |
const USHORT_RANGE = ( 1 << 16 ); | |
const BITMAP_SIZE = ( USHORT_RANGE >> 3 ); | |
const HUF_ENCBITS = 16; // literal (value) bit length | |
const HUF_DECBITS = 14; // decoding bit size (>= 8) | |
const HUF_ENCSIZE = ( 1 << HUF_ENCBITS ) + 1; // encoding table size | |
const HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size | |
const HUF_DECMASK = HUF_DECSIZE - 1; | |
const NBITS = 16; | |
const A_OFFSET = 1 << ( NBITS - 1 ); | |
const MOD_MASK = ( 1 << NBITS ) - 1; | |
const SHORT_ZEROCODE_RUN = 59; | |
const LONG_ZEROCODE_RUN = 63; | |
const SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; | |
const ULONG_SIZE = 8; | |
const FLOAT32_SIZE = 4; | |
const INT32_SIZE = 4; | |
const INT16_SIZE = 2; | |
const INT8_SIZE = 1; | |
const STATIC_HUFFMAN = 0; | |
const DEFLATE = 1; | |
const UNKNOWN = 0; | |
const LOSSY_DCT = 1; | |
const RLE = 2; | |
const logBase = Math.pow( 2.7182818, 2.2 ); | |
function reverseLutFromBitmap( bitmap, lut ) { | |
let k = 0; | |
for ( let i = 0; i < USHORT_RANGE; ++ i ) { | |
if ( ( i == 0 ) || ( bitmap[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) ) { | |
lut[ k ++ ] = i; | |
} | |
} | |
const n = k - 1; | |
while ( k < USHORT_RANGE ) lut[ k ++ ] = 0; | |
return n; | |
} | |
function hufClearDecTable( hdec ) { | |
for ( let i = 0; i < HUF_DECSIZE; i ++ ) { | |
hdec[ i ] = {}; | |
hdec[ i ].len = 0; | |
hdec[ i ].lit = 0; | |
hdec[ i ].p = null; | |
} | |
} | |
const getBitsReturn = { l: 0, c: 0, lc: 0 }; | |
function getBits( nBits, c, lc, uInt8Array, inOffset ) { | |
while ( lc < nBits ) { | |
c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset ); | |
lc += 8; | |
} | |
lc -= nBits; | |
getBitsReturn.l = ( c >> lc ) & ( ( 1 << nBits ) - 1 ); | |
getBitsReturn.c = c; | |
getBitsReturn.lc = lc; | |
} | |
const hufTableBuffer = new Array( 59 ); | |
function hufCanonicalCodeTable( hcode ) { | |
for ( let i = 0; i <= 58; ++ i ) hufTableBuffer[ i ] = 0; | |
for ( let i = 0; i < HUF_ENCSIZE; ++ i ) hufTableBuffer[ hcode[ i ] ] += 1; | |
let c = 0; | |
for ( let i = 58; i > 0; -- i ) { | |
const nc = ( ( c + hufTableBuffer[ i ] ) >> 1 ); | |
hufTableBuffer[ i ] = c; | |
c = nc; | |
} | |
for ( let i = 0; i < HUF_ENCSIZE; ++ i ) { | |
const l = hcode[ i ]; | |
if ( l > 0 ) hcode[ i ] = l | ( hufTableBuffer[ l ] ++ << 6 ); | |
} | |
} | |
function hufUnpackEncTable( uInt8Array, inOffset, ni, im, iM, hcode ) { | |
const p = inOffset; | |
let c = 0; | |
let lc = 0; | |
for ( ; im <= iM; im ++ ) { | |
if ( p.value - inOffset.value > ni ) return false; | |
getBits( 6, c, lc, uInt8Array, p ); | |
const l = getBitsReturn.l; | |
c = getBitsReturn.c; | |
lc = getBitsReturn.lc; | |
hcode[ im ] = l; | |
if ( l == LONG_ZEROCODE_RUN ) { | |
if ( p.value - inOffset.value > ni ) { | |
throw new Error( 'Something wrong with hufUnpackEncTable' ); | |
} | |
getBits( 8, c, lc, uInt8Array, p ); | |
let zerun = getBitsReturn.l + SHORTEST_LONG_RUN; | |
c = getBitsReturn.c; | |
lc = getBitsReturn.lc; | |
if ( im + zerun > iM + 1 ) { | |
throw new Error( 'Something wrong with hufUnpackEncTable' ); | |
} | |
while ( zerun -- ) hcode[ im ++ ] = 0; | |
im --; | |
} else if ( l >= SHORT_ZEROCODE_RUN ) { | |
let zerun = l - SHORT_ZEROCODE_RUN + 2; | |
if ( im + zerun > iM + 1 ) { | |
throw new Error( 'Something wrong with hufUnpackEncTable' ); | |
} | |
while ( zerun -- ) hcode[ im ++ ] = 0; | |
im --; | |
} | |
} | |
hufCanonicalCodeTable( hcode ); | |
} | |
function hufLength( code ) { | |
return code & 63; | |
} | |
function hufCode( code ) { | |
return code >> 6; | |
} | |
function hufBuildDecTable( hcode, im, iM, hdecod ) { | |
for ( ; im <= iM; im ++ ) { | |
const c = hufCode( hcode[ im ] ); | |
const l = hufLength( hcode[ im ] ); | |
if ( c >> l ) { | |
throw new Error( 'Invalid table entry' ); | |
} | |
if ( l > HUF_DECBITS ) { | |
const pl = hdecod[ ( c >> ( l - HUF_DECBITS ) ) ]; | |
if ( pl.len ) { | |
throw new Error( 'Invalid table entry' ); | |
} | |
pl.lit ++; | |
if ( pl.p ) { | |
const p = pl.p; | |
pl.p = new Array( pl.lit ); | |
for ( let i = 0; i < pl.lit - 1; ++ i ) { | |
pl.p[ i ] = p[ i ]; | |
} | |
} else { | |
pl.p = new Array( 1 ); | |
} | |
pl.p[ pl.lit - 1 ] = im; | |
} else if ( l ) { | |
let plOffset = 0; | |
for ( let i = 1 << ( HUF_DECBITS - l ); i > 0; i -- ) { | |
const pl = hdecod[ ( c << ( HUF_DECBITS - l ) ) + plOffset ]; | |
if ( pl.len || pl.p ) { | |
throw new Error( 'Invalid table entry' ); | |
} | |
pl.len = l; | |
pl.lit = im; | |
plOffset ++; | |
} | |
} | |
} | |
return true; | |
} | |
const getCharReturn = { c: 0, lc: 0 }; | |
function getChar( c, lc, uInt8Array, inOffset ) { | |
c = ( c << 8 ) | parseUint8Array( uInt8Array, inOffset ); | |
lc += 8; | |
getCharReturn.c = c; | |
getCharReturn.lc = lc; | |
} | |
const getCodeReturn = { c: 0, lc: 0 }; | |
function getCode( po, rlc, c, lc, uInt8Array, inOffset, outBuffer, outBufferOffset, outBufferEndOffset ) { | |
if ( po == rlc ) { | |
if ( lc < 8 ) { | |
getChar( c, lc, uInt8Array, inOffset ); | |
c = getCharReturn.c; | |
lc = getCharReturn.lc; | |
} | |
lc -= 8; | |
let cs = ( c >> lc ); | |
cs = new Uint8Array( [ cs ] )[ 0 ]; | |
if ( outBufferOffset.value + cs > outBufferEndOffset ) { | |
return false; | |
} | |
const s = outBuffer[ outBufferOffset.value - 1 ]; | |
while ( cs -- > 0 ) { | |
outBuffer[ outBufferOffset.value ++ ] = s; | |
} | |
} else if ( outBufferOffset.value < outBufferEndOffset ) { | |
outBuffer[ outBufferOffset.value ++ ] = po; | |
} else { | |
return false; | |
} | |
getCodeReturn.c = c; | |
getCodeReturn.lc = lc; | |
} | |
function UInt16( value ) { | |
return ( value & 0xFFFF ); | |
} | |
function Int16( value ) { | |
const ref = UInt16( value ); | |
return ( ref > 0x7FFF ) ? ref - 0x10000 : ref; | |
} | |
const wdec14Return = { a: 0, b: 0 }; | |
function wdec14( l, h ) { | |
const ls = Int16( l ); | |
const hs = Int16( h ); | |
const hi = hs; | |
const ai = ls + ( hi & 1 ) + ( hi >> 1 ); | |
const as = ai; | |
const bs = ai - hi; | |
wdec14Return.a = as; | |
wdec14Return.b = bs; | |
} | |
function wdec16( l, h ) { | |
const m = UInt16( l ); | |
const d = UInt16( h ); | |
const bb = ( m - ( d >> 1 ) ) & MOD_MASK; | |
const aa = ( d + bb - A_OFFSET ) & MOD_MASK; | |
wdec14Return.a = aa; | |
wdec14Return.b = bb; | |
} | |
function wav2Decode( buffer, j, nx, ox, ny, oy, mx ) { | |
const w14 = mx < ( 1 << 14 ); | |
const n = ( nx > ny ) ? ny : nx; | |
let p = 1; | |
let p2; | |
let py; | |
while ( p <= n ) p <<= 1; | |
p >>= 1; | |
p2 = p; | |
p >>= 1; | |
while ( p >= 1 ) { | |
py = 0; | |
const ey = py + oy * ( ny - p2 ); | |
const oy1 = oy * p; | |
const oy2 = oy * p2; | |
const ox1 = ox * p; | |
const ox2 = ox * p2; | |
let i00, i01, i10, i11; | |
for ( ; py <= ey; py += oy2 ) { | |
let px = py; | |
const ex = py + ox * ( nx - p2 ); | |
for ( ; px <= ex; px += ox2 ) { | |
const p01 = px + ox1; | |
const p10 = px + oy1; | |
const p11 = p10 + ox1; | |
if ( w14 ) { | |
wdec14( buffer[ px + j ], buffer[ p10 + j ] ); | |
i00 = wdec14Return.a; | |
i10 = wdec14Return.b; | |
wdec14( buffer[ p01 + j ], buffer[ p11 + j ] ); | |
i01 = wdec14Return.a; | |
i11 = wdec14Return.b; | |
wdec14( i00, i01 ); | |
buffer[ px + j ] = wdec14Return.a; | |
buffer[ p01 + j ] = wdec14Return.b; | |
wdec14( i10, i11 ); | |
buffer[ p10 + j ] = wdec14Return.a; | |
buffer[ p11 + j ] = wdec14Return.b; | |
} else { | |
wdec16( buffer[ px + j ], buffer[ p10 + j ] ); | |
i00 = wdec14Return.a; | |
i10 = wdec14Return.b; | |
wdec16( buffer[ p01 + j ], buffer[ p11 + j ] ); | |
i01 = wdec14Return.a; | |
i11 = wdec14Return.b; | |
wdec16( i00, i01 ); | |
buffer[ px + j ] = wdec14Return.a; | |
buffer[ p01 + j ] = wdec14Return.b; | |
wdec16( i10, i11 ); | |
buffer[ p10 + j ] = wdec14Return.a; | |
buffer[ p11 + j ] = wdec14Return.b; | |
} | |
} | |
if ( nx & p ) { | |
const p10 = px + oy1; | |
if ( w14 ) | |
wdec14( buffer[ px + j ], buffer[ p10 + j ] ); | |
else | |
wdec16( buffer[ px + j ], buffer[ p10 + j ] ); | |
i00 = wdec14Return.a; | |
buffer[ p10 + j ] = wdec14Return.b; | |
buffer[ px + j ] = i00; | |
} | |
} | |
if ( ny & p ) { | |
let px = py; | |
const ex = py + ox * ( nx - p2 ); | |
for ( ; px <= ex; px += ox2 ) { | |
const p01 = px + ox1; | |
if ( w14 ) | |
wdec14( buffer[ px + j ], buffer[ p01 + j ] ); | |
else | |
wdec16( buffer[ px + j ], buffer[ p01 + j ] ); | |
i00 = wdec14Return.a; | |
buffer[ p01 + j ] = wdec14Return.b; | |
buffer[ px + j ] = i00; | |
} | |
} | |
p2 = p; | |
p >>= 1; | |
} | |
return py; | |
} | |
function hufDecode( encodingTable, decodingTable, uInt8Array, inOffset, ni, rlc, no, outBuffer, outOffset ) { | |
let c = 0; | |
let lc = 0; | |
const outBufferEndOffset = no; | |
const inOffsetEnd = Math.trunc( inOffset.value + ( ni + 7 ) / 8 ); | |
while ( inOffset.value < inOffsetEnd ) { | |
getChar( c, lc, uInt8Array, inOffset ); | |
c = getCharReturn.c; | |
lc = getCharReturn.lc; | |
while ( lc >= HUF_DECBITS ) { | |
const index = ( c >> ( lc - HUF_DECBITS ) ) & HUF_DECMASK; | |
const pl = decodingTable[ index ]; | |
if ( pl.len ) { | |
lc -= pl.len; | |
getCode( pl.lit, rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset ); | |
c = getCodeReturn.c; | |
lc = getCodeReturn.lc; | |
} else { | |
if ( ! pl.p ) { | |
throw new Error( 'hufDecode issues' ); | |
} | |
let j; | |
for ( j = 0; j < pl.lit; j ++ ) { | |
const l = hufLength( encodingTable[ pl.p[ j ] ] ); | |
while ( lc < l && inOffset.value < inOffsetEnd ) { | |
getChar( c, lc, uInt8Array, inOffset ); | |
c = getCharReturn.c; | |
lc = getCharReturn.lc; | |
} | |
if ( lc >= l ) { | |
if ( hufCode( encodingTable[ pl.p[ j ] ] ) == ( ( c >> ( lc - l ) ) & ( ( 1 << l ) - 1 ) ) ) { | |
lc -= l; | |
getCode( pl.p[ j ], rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset ); | |
c = getCodeReturn.c; | |
lc = getCodeReturn.lc; | |
break; | |
} | |
} | |
} | |
if ( j == pl.lit ) { | |
throw new Error( 'hufDecode issues' ); | |
} | |
} | |
} | |
} | |
const i = ( 8 - ni ) & 7; | |
c >>= i; | |
lc -= i; | |
while ( lc > 0 ) { | |
const pl = decodingTable[ ( c << ( HUF_DECBITS - lc ) ) & HUF_DECMASK ]; | |
if ( pl.len ) { | |
lc -= pl.len; | |
getCode( pl.lit, rlc, c, lc, uInt8Array, inOffset, outBuffer, outOffset, outBufferEndOffset ); | |
c = getCodeReturn.c; | |
lc = getCodeReturn.lc; | |
} else { | |
throw new Error( 'hufDecode issues' ); | |
} | |
} | |
return true; | |
} | |
function hufUncompress( uInt8Array, inDataView, inOffset, nCompressed, outBuffer, nRaw ) { | |
const outOffset = { value: 0 }; | |
const initialInOffset = inOffset.value; | |
const im = parseUint32( inDataView, inOffset ); | |
const iM = parseUint32( inDataView, inOffset ); | |
inOffset.value += 4; | |
const nBits = parseUint32( inDataView, inOffset ); | |
inOffset.value += 4; | |
if ( im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE ) { | |
throw new Error( 'Something wrong with HUF_ENCSIZE' ); | |
} | |
const freq = new Array( HUF_ENCSIZE ); | |
const hdec = new Array( HUF_DECSIZE ); | |
hufClearDecTable( hdec ); | |
const ni = nCompressed - ( inOffset.value - initialInOffset ); | |
hufUnpackEncTable( uInt8Array, inOffset, ni, im, iM, freq ); | |
if ( nBits > 8 * ( nCompressed - ( inOffset.value - initialInOffset ) ) ) { | |
throw new Error( 'Something wrong with hufUncompress' ); | |
} | |
hufBuildDecTable( freq, im, iM, hdec ); | |
hufDecode( freq, hdec, uInt8Array, inOffset, nBits, iM, nRaw, outBuffer, outOffset ); | |
} | |
function applyLut( lut, data, nData ) { | |
for ( let i = 0; i < nData; ++ i ) { | |
data[ i ] = lut[ data[ i ] ]; | |
} | |
} | |
function predictor( source ) { | |
for ( let t = 1; t < source.length; t ++ ) { | |
const d = source[ t - 1 ] + source[ t ] - 128; | |
source[ t ] = d; | |
} | |
} | |
function interleaveScalar( source, out ) { | |
let t1 = 0; | |
let t2 = Math.floor( ( source.length + 1 ) / 2 ); | |
let s = 0; | |
const stop = source.length - 1; | |
while ( true ) { | |
if ( s > stop ) break; | |
out[ s ++ ] = source[ t1 ++ ]; | |
if ( s > stop ) break; | |
out[ s ++ ] = source[ t2 ++ ]; | |
} | |
} | |
function decodeRunLength( source ) { | |
let size = source.byteLength; | |
const out = new Array(); | |
let p = 0; | |
const reader = new DataView( source ); | |
while ( size > 0 ) { | |
const l = reader.getInt8( p ++ ); | |
if ( l < 0 ) { | |
const count = - l; | |
size -= count + 1; | |
for ( let i = 0; i < count; i ++ ) { | |
out.push( reader.getUint8( p ++ ) ); | |
} | |
} else { | |
const count = l; | |
size -= 2; | |
const value = reader.getUint8( p ++ ); | |
for ( let i = 0; i < count + 1; i ++ ) { | |
out.push( value ); | |
} | |
} | |
} | |
return out; | |
} | |
function lossyDctDecode( cscSet, rowPtrs, channelData, acBuffer, dcBuffer, outBuffer ) { | |
let dataView = new DataView( outBuffer.buffer ); | |
const width = channelData[ cscSet.idx[ 0 ] ].width; | |
const height = channelData[ cscSet.idx[ 0 ] ].height; | |
const numComp = 3; | |
const numFullBlocksX = Math.floor( width / 8.0 ); | |
const numBlocksX = Math.ceil( width / 8.0 ); | |
const numBlocksY = Math.ceil( height / 8.0 ); | |
const leftoverX = width - ( numBlocksX - 1 ) * 8; | |
const leftoverY = height - ( numBlocksY - 1 ) * 8; | |
const currAcComp = { value: 0 }; | |
const currDcComp = new Array( numComp ); | |
const dctData = new Array( numComp ); | |
const halfZigBlock = new Array( numComp ); | |
const rowBlock = new Array( numComp ); | |
const rowOffsets = new Array( numComp ); | |
for ( let comp = 0; comp < numComp; ++ comp ) { | |
rowOffsets[ comp ] = rowPtrs[ cscSet.idx[ comp ] ]; | |
currDcComp[ comp ] = ( comp < 1 ) ? 0 : currDcComp[ comp - 1 ] + numBlocksX * numBlocksY; | |
dctData[ comp ] = new Float32Array( 64 ); | |
halfZigBlock[ comp ] = new Uint16Array( 64 ); | |
rowBlock[ comp ] = new Uint16Array( numBlocksX * 64 ); | |
} | |
for ( let blocky = 0; blocky < numBlocksY; ++ blocky ) { | |
let maxY = 8; | |
if ( blocky == numBlocksY - 1 ) | |
maxY = leftoverY; | |
let maxX = 8; | |
for ( let blockx = 0; blockx < numBlocksX; ++ blockx ) { | |
if ( blockx == numBlocksX - 1 ) | |
maxX = leftoverX; | |
for ( let comp = 0; comp < numComp; ++ comp ) { | |
halfZigBlock[ comp ].fill( 0 ); | |
// set block DC component | |
halfZigBlock[ comp ][ 0 ] = dcBuffer[ currDcComp[ comp ] ++ ]; | |
// set block AC components | |
unRleAC( currAcComp, acBuffer, halfZigBlock[ comp ] ); | |
// UnZigZag block to float | |
unZigZag( halfZigBlock[ comp ], dctData[ comp ] ); | |
// decode float dct | |
dctInverse( dctData[ comp ] ); | |
} | |
if ( numComp == 3 ) { | |
csc709Inverse( dctData ); | |
} | |
for ( let comp = 0; comp < numComp; ++ comp ) { | |
convertToHalf( dctData[ comp ], rowBlock[ comp ], blockx * 64 ); | |
} | |
} // blockx | |
let offset = 0; | |
for ( let comp = 0; comp < numComp; ++ comp ) { | |
const type = channelData[ cscSet.idx[ comp ] ].type; | |
for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) { | |
offset = rowOffsets[ comp ][ y ]; | |
for ( let blockx = 0; blockx < numFullBlocksX; ++ blockx ) { | |
const src = blockx * 64 + ( ( y & 0x7 ) * 8 ); | |
dataView.setUint16( offset + 0 * INT16_SIZE * type, rowBlock[ comp ][ src + 0 ], true ); | |
dataView.setUint16( offset + 1 * INT16_SIZE * type, rowBlock[ comp ][ src + 1 ], true ); | |
dataView.setUint16( offset + 2 * INT16_SIZE * type, rowBlock[ comp ][ src + 2 ], true ); | |
dataView.setUint16( offset + 3 * INT16_SIZE * type, rowBlock[ comp ][ src + 3 ], true ); | |
dataView.setUint16( offset + 4 * INT16_SIZE * type, rowBlock[ comp ][ src + 4 ], true ); | |
dataView.setUint16( offset + 5 * INT16_SIZE * type, rowBlock[ comp ][ src + 5 ], true ); | |
dataView.setUint16( offset + 6 * INT16_SIZE * type, rowBlock[ comp ][ src + 6 ], true ); | |
dataView.setUint16( offset + 7 * INT16_SIZE * type, rowBlock[ comp ][ src + 7 ], true ); | |
offset += 8 * INT16_SIZE * type; | |
} | |
} | |
// handle partial X blocks | |
if ( numFullBlocksX != numBlocksX ) { | |
for ( let y = 8 * blocky; y < 8 * blocky + maxY; ++ y ) { | |
const offset = rowOffsets[ comp ][ y ] + 8 * numFullBlocksX * INT16_SIZE * type; | |
const src = numFullBlocksX * 64 + ( ( y & 0x7 ) * 8 ); | |
for ( let x = 0; x < maxX; ++ x ) { | |
dataView.setUint16( offset + x * INT16_SIZE * type, rowBlock[ comp ][ src + x ], true ); | |
} | |
} | |
} | |
} // comp | |
} // blocky | |
const halfRow = new Uint16Array( width ); | |
dataView = new DataView( outBuffer.buffer ); | |
// convert channels back to float, if needed | |
for ( let comp = 0; comp < numComp; ++ comp ) { | |
channelData[ cscSet.idx[ comp ] ].decoded = true; | |
const type = channelData[ cscSet.idx[ comp ] ].type; | |
if ( channelData[ comp ].type != 2 ) continue; | |
for ( let y = 0; y < height; ++ y ) { | |
const offset = rowOffsets[ comp ][ y ]; | |
for ( let x = 0; x < width; ++ x ) { | |
halfRow[ x ] = dataView.getUint16( offset + x * INT16_SIZE * type, true ); | |
} | |
for ( let x = 0; x < width; ++ x ) { | |
dataView.setFloat32( offset + x * INT16_SIZE * type, decodeFloat16( halfRow[ x ] ), true ); | |
} | |
} | |
} | |
} | |
function unRleAC( currAcComp, acBuffer, halfZigBlock ) { | |
let acValue; | |
let dctComp = 1; | |
while ( dctComp < 64 ) { | |
acValue = acBuffer[ currAcComp.value ]; | |
if ( acValue == 0xff00 ) { | |
dctComp = 64; | |
} else if ( acValue >> 8 == 0xff ) { | |
dctComp += acValue & 0xff; | |
} else { | |
halfZigBlock[ dctComp ] = acValue; | |
dctComp ++; | |
} | |
currAcComp.value ++; | |
} | |
} | |
function unZigZag( src, dst ) { | |
dst[ 0 ] = decodeFloat16( src[ 0 ] ); | |
dst[ 1 ] = decodeFloat16( src[ 1 ] ); | |
dst[ 2 ] = decodeFloat16( src[ 5 ] ); | |
dst[ 3 ] = decodeFloat16( src[ 6 ] ); | |
dst[ 4 ] = decodeFloat16( src[ 14 ] ); | |
dst[ 5 ] = decodeFloat16( src[ 15 ] ); | |
dst[ 6 ] = decodeFloat16( src[ 27 ] ); | |
dst[ 7 ] = decodeFloat16( src[ 28 ] ); | |
dst[ 8 ] = decodeFloat16( src[ 2 ] ); | |
dst[ 9 ] = decodeFloat16( src[ 4 ] ); | |
dst[ 10 ] = decodeFloat16( src[ 7 ] ); | |
dst[ 11 ] = decodeFloat16( src[ 13 ] ); | |
dst[ 12 ] = decodeFloat16( src[ 16 ] ); | |
dst[ 13 ] = decodeFloat16( src[ 26 ] ); | |
dst[ 14 ] = decodeFloat16( src[ 29 ] ); | |
dst[ 15 ] = decodeFloat16( src[ 42 ] ); | |
dst[ 16 ] = decodeFloat16( src[ 3 ] ); | |
dst[ 17 ] = decodeFloat16( src[ 8 ] ); | |
dst[ 18 ] = decodeFloat16( src[ 12 ] ); | |
dst[ 19 ] = decodeFloat16( src[ 17 ] ); | |
dst[ 20 ] = decodeFloat16( src[ 25 ] ); | |
dst[ 21 ] = decodeFloat16( src[ 30 ] ); | |
dst[ 22 ] = decodeFloat16( src[ 41 ] ); | |
dst[ 23 ] = decodeFloat16( src[ 43 ] ); | |
dst[ 24 ] = decodeFloat16( src[ 9 ] ); | |
dst[ 25 ] = decodeFloat16( src[ 11 ] ); | |
dst[ 26 ] = decodeFloat16( src[ 18 ] ); | |
dst[ 27 ] = decodeFloat16( src[ 24 ] ); | |
dst[ 28 ] = decodeFloat16( src[ 31 ] ); | |
dst[ 29 ] = decodeFloat16( src[ 40 ] ); | |
dst[ 30 ] = decodeFloat16( src[ 44 ] ); | |
dst[ 31 ] = decodeFloat16( src[ 53 ] ); | |
dst[ 32 ] = decodeFloat16( src[ 10 ] ); | |
dst[ 33 ] = decodeFloat16( src[ 19 ] ); | |
dst[ 34 ] = decodeFloat16( src[ 23 ] ); | |
dst[ 35 ] = decodeFloat16( src[ 32 ] ); | |
dst[ 36 ] = decodeFloat16( src[ 39 ] ); | |
dst[ 37 ] = decodeFloat16( src[ 45 ] ); | |
dst[ 38 ] = decodeFloat16( src[ 52 ] ); | |
dst[ 39 ] = decodeFloat16( src[ 54 ] ); | |
dst[ 40 ] = decodeFloat16( src[ 20 ] ); | |
dst[ 41 ] = decodeFloat16( src[ 22 ] ); | |
dst[ 42 ] = decodeFloat16( src[ 33 ] ); | |
dst[ 43 ] = decodeFloat16( src[ 38 ] ); | |
dst[ 44 ] = decodeFloat16( src[ 46 ] ); | |
dst[ 45 ] = decodeFloat16( src[ 51 ] ); | |
dst[ 46 ] = decodeFloat16( src[ 55 ] ); | |
dst[ 47 ] = decodeFloat16( src[ 60 ] ); | |
dst[ 48 ] = decodeFloat16( src[ 21 ] ); | |
dst[ 49 ] = decodeFloat16( src[ 34 ] ); | |
dst[ 50 ] = decodeFloat16( src[ 37 ] ); | |
dst[ 51 ] = decodeFloat16( src[ 47 ] ); | |
dst[ 52 ] = decodeFloat16( src[ 50 ] ); | |
dst[ 53 ] = decodeFloat16( src[ 56 ] ); | |
dst[ 54 ] = decodeFloat16( src[ 59 ] ); | |
dst[ 55 ] = decodeFloat16( src[ 61 ] ); | |
dst[ 56 ] = decodeFloat16( src[ 35 ] ); | |
dst[ 57 ] = decodeFloat16( src[ 36 ] ); | |
dst[ 58 ] = decodeFloat16( src[ 48 ] ); | |
dst[ 59 ] = decodeFloat16( src[ 49 ] ); | |
dst[ 60 ] = decodeFloat16( src[ 57 ] ); | |
dst[ 61 ] = decodeFloat16( src[ 58 ] ); | |
dst[ 62 ] = decodeFloat16( src[ 62 ] ); | |
dst[ 63 ] = decodeFloat16( src[ 63 ] ); | |
} | |
function dctInverse( data ) { | |
const a = 0.5 * Math.cos( 3.14159 / 4.0 ); | |
const b = 0.5 * Math.cos( 3.14159 / 16.0 ); | |
const c = 0.5 * Math.cos( 3.14159 / 8.0 ); | |
const d = 0.5 * Math.cos( 3.0 * 3.14159 / 16.0 ); | |
const e = 0.5 * Math.cos( 5.0 * 3.14159 / 16.0 ); | |
const f = 0.5 * Math.cos( 3.0 * 3.14159 / 8.0 ); | |
const g = 0.5 * Math.cos( 7.0 * 3.14159 / 16.0 ); | |
const alpha = new Array( 4 ); | |
const beta = new Array( 4 ); | |
const theta = new Array( 4 ); | |
const gamma = new Array( 4 ); | |
for ( let row = 0; row < 8; ++ row ) { | |
const rowPtr = row * 8; | |
alpha[ 0 ] = c * data[ rowPtr + 2 ]; | |
alpha[ 1 ] = f * data[ rowPtr + 2 ]; | |
alpha[ 2 ] = c * data[ rowPtr + 6 ]; | |
alpha[ 3 ] = f * data[ rowPtr + 6 ]; | |
beta[ 0 ] = b * data[ rowPtr + 1 ] + d * data[ rowPtr + 3 ] + e * data[ rowPtr + 5 ] + g * data[ rowPtr + 7 ]; | |
beta[ 1 ] = d * data[ rowPtr + 1 ] - g * data[ rowPtr + 3 ] - b * data[ rowPtr + 5 ] - e * data[ rowPtr + 7 ]; | |
beta[ 2 ] = e * data[ rowPtr + 1 ] - b * data[ rowPtr + 3 ] + g * data[ rowPtr + 5 ] + d * data[ rowPtr + 7 ]; | |
beta[ 3 ] = g * data[ rowPtr + 1 ] - e * data[ rowPtr + 3 ] + d * data[ rowPtr + 5 ] - b * data[ rowPtr + 7 ]; | |
theta[ 0 ] = a * ( data[ rowPtr + 0 ] + data[ rowPtr + 4 ] ); | |
theta[ 3 ] = a * ( data[ rowPtr + 0 ] - data[ rowPtr + 4 ] ); | |
theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ]; | |
theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ]; | |
gamma[ 0 ] = theta[ 0 ] + theta[ 1 ]; | |
gamma[ 1 ] = theta[ 3 ] + theta[ 2 ]; | |
gamma[ 2 ] = theta[ 3 ] - theta[ 2 ]; | |
gamma[ 3 ] = theta[ 0 ] - theta[ 1 ]; | |
data[ rowPtr + 0 ] = gamma[ 0 ] + beta[ 0 ]; | |
data[ rowPtr + 1 ] = gamma[ 1 ] + beta[ 1 ]; | |
data[ rowPtr + 2 ] = gamma[ 2 ] + beta[ 2 ]; | |
data[ rowPtr + 3 ] = gamma[ 3 ] + beta[ 3 ]; | |
data[ rowPtr + 4 ] = gamma[ 3 ] - beta[ 3 ]; | |
data[ rowPtr + 5 ] = gamma[ 2 ] - beta[ 2 ]; | |
data[ rowPtr + 6 ] = gamma[ 1 ] - beta[ 1 ]; | |
data[ rowPtr + 7 ] = gamma[ 0 ] - beta[ 0 ]; | |
} | |
for ( let column = 0; column < 8; ++ column ) { | |
alpha[ 0 ] = c * data[ 16 + column ]; | |
alpha[ 1 ] = f * data[ 16 + column ]; | |
alpha[ 2 ] = c * data[ 48 + column ]; | |
alpha[ 3 ] = f * data[ 48 + column ]; | |
beta[ 0 ] = b * data[ 8 + column ] + d * data[ 24 + column ] + e * data[ 40 + column ] + g * data[ 56 + column ]; | |
beta[ 1 ] = d * data[ 8 + column ] - g * data[ 24 + column ] - b * data[ 40 + column ] - e * data[ 56 + column ]; | |
beta[ 2 ] = e * data[ 8 + column ] - b * data[ 24 + column ] + g * data[ 40 + column ] + d * data[ 56 + column ]; | |
beta[ 3 ] = g * data[ 8 + column ] - e * data[ 24 + column ] + d * data[ 40 + column ] - b * data[ 56 + column ]; | |
theta[ 0 ] = a * ( data[ column ] + data[ 32 + column ] ); | |
theta[ 3 ] = a * ( data[ column ] - data[ 32 + column ] ); | |
theta[ 1 ] = alpha[ 0 ] + alpha[ 3 ]; | |
theta[ 2 ] = alpha[ 1 ] - alpha[ 2 ]; | |
gamma[ 0 ] = theta[ 0 ] + theta[ 1 ]; | |
gamma[ 1 ] = theta[ 3 ] + theta[ 2 ]; | |
gamma[ 2 ] = theta[ 3 ] - theta[ 2 ]; | |
gamma[ 3 ] = theta[ 0 ] - theta[ 1 ]; | |
data[ 0 + column ] = gamma[ 0 ] + beta[ 0 ]; | |
data[ 8 + column ] = gamma[ 1 ] + beta[ 1 ]; | |
data[ 16 + column ] = gamma[ 2 ] + beta[ 2 ]; | |
data[ 24 + column ] = gamma[ 3 ] + beta[ 3 ]; | |
data[ 32 + column ] = gamma[ 3 ] - beta[ 3 ]; | |
data[ 40 + column ] = gamma[ 2 ] - beta[ 2 ]; | |
data[ 48 + column ] = gamma[ 1 ] - beta[ 1 ]; | |
data[ 56 + column ] = gamma[ 0 ] - beta[ 0 ]; | |
} | |
} | |
function csc709Inverse( data ) { | |
for ( let i = 0; i < 64; ++ i ) { | |
const y = data[ 0 ][ i ]; | |
const cb = data[ 1 ][ i ]; | |
const cr = data[ 2 ][ i ]; | |
data[ 0 ][ i ] = y + 1.5747 * cr; | |
data[ 1 ][ i ] = y - 0.1873 * cb - 0.4682 * cr; | |
data[ 2 ][ i ] = y + 1.8556 * cb; | |
} | |
} | |
function convertToHalf( src, dst, idx ) { | |
for ( let i = 0; i < 64; ++ i ) { | |
dst[ idx + i ] = DataUtils.toHalfFloat( toLinear( src[ i ] ) ); | |
} | |
} | |
function toLinear( float ) { | |
if ( float <= 1 ) { | |
return Math.sign( float ) * Math.pow( Math.abs( float ), 2.2 ); | |
} else { | |
return Math.sign( float ) * Math.pow( logBase, Math.abs( float ) - 1.0 ); | |
} | |
} | |
function uncompressRAW( info ) { | |
return new DataView( info.array.buffer, info.offset.value, info.size ); | |
} | |
function uncompressRLE( info ) { | |
const compressed = info.viewer.buffer.slice( info.offset.value, info.offset.value + info.size ); | |
const rawBuffer = new Uint8Array( decodeRunLength( compressed ) ); | |
const tmpBuffer = new Uint8Array( rawBuffer.length ); | |
predictor( rawBuffer ); // revert predictor | |
interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels | |
return new DataView( tmpBuffer.buffer ); | |
} | |
function uncompressZIP( info ) { | |
const compressed = info.array.slice( info.offset.value, info.offset.value + info.size ); | |
const rawBuffer = fflate.unzlibSync( compressed ); | |
const tmpBuffer = new Uint8Array( rawBuffer.length ); | |
predictor( rawBuffer ); // revert predictor | |
interleaveScalar( rawBuffer, tmpBuffer ); // interleave pixels | |
return new DataView( tmpBuffer.buffer ); | |
} | |
function uncompressPIZ( info ) { | |
const inDataView = info.viewer; | |
const inOffset = { value: info.offset.value }; | |
const outBuffer = new Uint16Array( info.columns * info.lines * ( info.inputChannels.length * info.type ) ); | |
const bitmap = new Uint8Array( BITMAP_SIZE ); | |
// Setup channel info | |
let outBufferEnd = 0; | |
const pizChannelData = new Array( info.inputChannels.length ); | |
for ( let i = 0, il = info.inputChannels.length; i < il; i ++ ) { | |
pizChannelData[ i ] = {}; | |
pizChannelData[ i ][ 'start' ] = outBufferEnd; | |
pizChannelData[ i ][ 'end' ] = pizChannelData[ i ][ 'start' ]; | |
pizChannelData[ i ][ 'nx' ] = info.columns; | |
pizChannelData[ i ][ 'ny' ] = info.lines; | |
pizChannelData[ i ][ 'size' ] = info.type; | |
outBufferEnd += pizChannelData[ i ].nx * pizChannelData[ i ].ny * pizChannelData[ i ].size; | |
} | |
// Read range compression data | |
const minNonZero = parseUint16( inDataView, inOffset ); | |
const maxNonZero = parseUint16( inDataView, inOffset ); | |
if ( maxNonZero >= BITMAP_SIZE ) { | |
throw new Error( 'Something is wrong with PIZ_COMPRESSION BITMAP_SIZE' ); | |
} | |
if ( minNonZero <= maxNonZero ) { | |
for ( let i = 0; i < maxNonZero - minNonZero + 1; i ++ ) { | |
bitmap[ i + minNonZero ] = parseUint8( inDataView, inOffset ); | |
} | |
} | |
// Reverse LUT | |
const lut = new Uint16Array( USHORT_RANGE ); | |
const maxValue = reverseLutFromBitmap( bitmap, lut ); | |
const length = parseUint32( inDataView, inOffset ); | |
// Huffman decoding | |
hufUncompress( info.array, inDataView, inOffset, length, outBuffer, outBufferEnd ); | |
// Wavelet decoding | |
for ( let i = 0; i < info.inputChannels.length; ++ i ) { | |
const cd = pizChannelData[ i ]; | |
for ( let j = 0; j < pizChannelData[ i ].size; ++ j ) { | |
wav2Decode( | |
outBuffer, | |
cd.start + j, | |
cd.nx, | |
cd.size, | |
cd.ny, | |
cd.nx * cd.size, | |
maxValue | |
); | |
} | |
} | |
// Expand the pixel data to their original range | |
applyLut( lut, outBuffer, outBufferEnd ); | |
// Rearrange the pixel data into the format expected by the caller. | |
let tmpOffset = 0; | |
const tmpBuffer = new Uint8Array( outBuffer.buffer.byteLength ); | |
for ( let y = 0; y < info.lines; y ++ ) { | |
for ( let c = 0; c < info.inputChannels.length; c ++ ) { | |
const cd = pizChannelData[ c ]; | |
const n = cd.nx * cd.size; | |
const cp = new Uint8Array( outBuffer.buffer, cd.end * INT16_SIZE, n * INT16_SIZE ); | |
tmpBuffer.set( cp, tmpOffset ); | |
tmpOffset += n * INT16_SIZE; | |
cd.end += n; | |
} | |
} | |
return new DataView( tmpBuffer.buffer ); | |
} | |
function uncompressPXR( info ) { | |
const compressed = info.array.slice( info.offset.value, info.offset.value + info.size ); | |
const rawBuffer = fflate.unzlibSync( compressed ); | |
const byteSize = info.inputChannels.length * info.lines * info.columns * info.totalBytes; | |
const tmpBuffer = new ArrayBuffer( byteSize ); | |
const viewer = new DataView( tmpBuffer ); | |
let tmpBufferEnd = 0; | |
let writePtr = 0; | |
const ptr = new Array( 4 ); | |
for ( let y = 0; y < info.lines; y ++ ) { | |
for ( let c = 0; c < info.inputChannels.length; c ++ ) { | |
let pixel = 0; | |
const type = info.inputChannels[ c ].pixelType; | |
switch ( type ) { | |
case 1: | |
ptr[ 0 ] = tmpBufferEnd; | |
ptr[ 1 ] = ptr[ 0 ] + info.columns; | |
tmpBufferEnd = ptr[ 1 ] + info.columns; | |
for ( let j = 0; j < info.columns; ++ j ) { | |
const diff = ( rawBuffer[ ptr[ 0 ] ++ ] << 8 ) | rawBuffer[ ptr[ 1 ] ++ ]; | |
pixel += diff; | |
viewer.setUint16( writePtr, pixel, true ); | |
writePtr += 2; | |
} | |
break; | |
case 2: | |
ptr[ 0 ] = tmpBufferEnd; | |
ptr[ 1 ] = ptr[ 0 ] + info.columns; | |
ptr[ 2 ] = ptr[ 1 ] + info.columns; | |
tmpBufferEnd = ptr[ 2 ] + info.columns; | |
for ( let j = 0; j < info.columns; ++ j ) { | |
const diff = ( rawBuffer[ ptr[ 0 ] ++ ] << 24 ) | ( rawBuffer[ ptr[ 1 ] ++ ] << 16 ) | ( rawBuffer[ ptr[ 2 ] ++ ] << 8 ); | |
pixel += diff; | |
viewer.setUint32( writePtr, pixel, true ); | |
writePtr += 4; | |
} | |
break; | |
} | |
} | |
} | |
return viewer; | |
} | |
function uncompressDWA( info ) { | |
const inDataView = info.viewer; | |
const inOffset = { value: info.offset.value }; | |
const outBuffer = new Uint8Array( info.columns * info.lines * ( info.inputChannels.length * info.type * INT16_SIZE ) ); | |
// Read compression header information | |
const dwaHeader = { | |
version: parseInt64( inDataView, inOffset ), | |
unknownUncompressedSize: parseInt64( inDataView, inOffset ), | |
unknownCompressedSize: parseInt64( inDataView, inOffset ), | |
acCompressedSize: parseInt64( inDataView, inOffset ), | |
dcCompressedSize: parseInt64( inDataView, inOffset ), | |
rleCompressedSize: parseInt64( inDataView, inOffset ), | |
rleUncompressedSize: parseInt64( inDataView, inOffset ), | |
rleRawSize: parseInt64( inDataView, inOffset ), | |
totalAcUncompressedCount: parseInt64( inDataView, inOffset ), | |
totalDcUncompressedCount: parseInt64( inDataView, inOffset ), | |
acCompression: parseInt64( inDataView, inOffset ) | |
}; | |
if ( dwaHeader.version < 2 ) | |
throw new Error( 'EXRLoader.parse: ' + EXRHeader.compression + ' version ' + dwaHeader.version + ' is unsupported' ); | |
// Read channel ruleset information | |
const channelRules = new Array(); | |
let ruleSize = parseUint16( inDataView, inOffset ) - INT16_SIZE; | |
while ( ruleSize > 0 ) { | |
const name = parseNullTerminatedString( inDataView.buffer, inOffset ); | |
const value = parseUint8( inDataView, inOffset ); | |
const compression = ( value >> 2 ) & 3; | |
const csc = ( value >> 4 ) - 1; | |
const index = new Int8Array( [ csc ] )[ 0 ]; | |
const type = parseUint8( inDataView, inOffset ); | |
channelRules.push( { | |
name: name, | |
index: index, | |
type: type, | |
compression: compression, | |
} ); | |
ruleSize -= name.length + 3; | |
} | |
// Classify channels | |
const channels = EXRHeader.channels; | |
const channelData = new Array( info.inputChannels.length ); | |
for ( let i = 0; i < info.inputChannels.length; ++ i ) { | |
const cd = channelData[ i ] = {}; | |
const channel = channels[ i ]; | |
cd.name = channel.name; | |
cd.compression = UNKNOWN; | |
cd.decoded = false; | |
cd.type = channel.pixelType; | |
cd.pLinear = channel.pLinear; | |
cd.width = info.columns; | |
cd.height = info.lines; | |
} | |
const cscSet = { | |
idx: new Array( 3 ) | |
}; | |
for ( let offset = 0; offset < info.inputChannels.length; ++ offset ) { | |
const cd = channelData[ offset ]; | |
for ( let i = 0; i < channelRules.length; ++ i ) { | |
const rule = channelRules[ i ]; | |
if ( cd.name == rule.name ) { | |
cd.compression = rule.compression; | |
if ( rule.index >= 0 ) { | |
cscSet.idx[ rule.index ] = offset; | |
} | |
cd.offset = offset; | |
} | |
} | |
} | |
let acBuffer, dcBuffer, rleBuffer; | |
// Read DCT - AC component data | |
if ( dwaHeader.acCompressedSize > 0 ) { | |
switch ( dwaHeader.acCompression ) { | |
case STATIC_HUFFMAN: | |
acBuffer = new Uint16Array( dwaHeader.totalAcUncompressedCount ); | |
hufUncompress( info.array, inDataView, inOffset, dwaHeader.acCompressedSize, acBuffer, dwaHeader.totalAcUncompressedCount ); | |
break; | |
case DEFLATE: | |
const compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.totalAcUncompressedCount ); | |
const data = fflate.unzlibSync( compressed ); | |
acBuffer = new Uint16Array( data.buffer ); | |
inOffset.value += dwaHeader.totalAcUncompressedCount; | |
break; | |
} | |
} | |
// Read DCT - DC component data | |
if ( dwaHeader.dcCompressedSize > 0 ) { | |
const zlibInfo = { | |
array: info.array, | |
offset: inOffset, | |
size: dwaHeader.dcCompressedSize | |
}; | |
dcBuffer = new Uint16Array( uncompressZIP( zlibInfo ).buffer ); | |
inOffset.value += dwaHeader.dcCompressedSize; | |
} | |
// Read RLE compressed data | |
if ( dwaHeader.rleRawSize > 0 ) { | |
const compressed = info.array.slice( inOffset.value, inOffset.value + dwaHeader.rleCompressedSize ); | |
const data = fflate.unzlibSync( compressed ); | |
rleBuffer = decodeRunLength( data.buffer ); | |
inOffset.value += dwaHeader.rleCompressedSize; | |
} | |
// Prepare outbuffer data offset | |
let outBufferEnd = 0; | |
const rowOffsets = new Array( channelData.length ); | |
for ( let i = 0; i < rowOffsets.length; ++ i ) { | |
rowOffsets[ i ] = new Array(); | |
} | |
for ( let y = 0; y < info.lines; ++ y ) { | |
for ( let chan = 0; chan < channelData.length; ++ chan ) { | |
rowOffsets[ chan ].push( outBufferEnd ); | |
outBufferEnd += channelData[ chan ].width * info.type * INT16_SIZE; | |
} | |
} | |
// Lossy DCT decode RGB channels | |
lossyDctDecode( cscSet, rowOffsets, channelData, acBuffer, dcBuffer, outBuffer ); | |
// Decode other channels | |
for ( let i = 0; i < channelData.length; ++ i ) { | |
const cd = channelData[ i ]; | |
if ( cd.decoded ) continue; | |
switch ( cd.compression ) { | |
case RLE: | |
let row = 0; | |
let rleOffset = 0; | |
for ( let y = 0; y < info.lines; ++ y ) { | |
let rowOffsetBytes = rowOffsets[ i ][ row ]; | |
for ( let x = 0; x < cd.width; ++ x ) { | |
for ( let byte = 0; byte < INT16_SIZE * cd.type; ++ byte ) { | |
outBuffer[ rowOffsetBytes ++ ] = rleBuffer[ rleOffset + byte * cd.width * cd.height ]; | |
} | |
rleOffset ++; | |
} | |
row ++; | |
} | |
break; | |
case LOSSY_DCT: // skip | |
default: | |
throw new Error( 'EXRLoader.parse: unsupported channel compression' ); | |
} | |
} | |
return new DataView( outBuffer.buffer ); | |
} | |
function parseNullTerminatedString( buffer, offset ) { | |
const uintBuffer = new Uint8Array( buffer ); | |
let endOffset = 0; | |
while ( uintBuffer[ offset.value + endOffset ] != 0 ) { | |
endOffset += 1; | |
} | |
const stringValue = new TextDecoder().decode( | |
uintBuffer.slice( offset.value, offset.value + endOffset ) | |
); | |
offset.value = offset.value + endOffset + 1; | |
return stringValue; | |
} | |
function parseFixedLengthString( buffer, offset, size ) { | |
const stringValue = new TextDecoder().decode( | |
new Uint8Array( buffer ).slice( offset.value, offset.value + size ) | |
); | |
offset.value = offset.value + size; | |
return stringValue; | |
} | |
function parseRational( dataView, offset ) { | |
const x = parseInt32( dataView, offset ); | |
const y = parseUint32( dataView, offset ); | |
return [ x, y ]; | |
} | |
function parseTimecode( dataView, offset ) { | |
const x = parseUint32( dataView, offset ); | |
const y = parseUint32( dataView, offset ); | |
return [ x, y ]; | |
} | |
function parseInt32( dataView, offset ) { | |
const Int32 = dataView.getInt32( offset.value, true ); | |
offset.value = offset.value + INT32_SIZE; | |
return Int32; | |
} | |
function parseUint32( dataView, offset ) { | |
const Uint32 = dataView.getUint32( offset.value, true ); | |
offset.value = offset.value + INT32_SIZE; | |
return Uint32; | |
} | |
function parseUint8Array( uInt8Array, offset ) { | |
const Uint8 = uInt8Array[ offset.value ]; | |
offset.value = offset.value + INT8_SIZE; | |
return Uint8; | |
} | |
function parseUint8( dataView, offset ) { | |
const Uint8 = dataView.getUint8( offset.value ); | |
offset.value = offset.value + INT8_SIZE; | |
return Uint8; | |
} | |
const parseInt64 = function ( dataView, offset ) { | |
let int; | |
if ( 'getBigInt64' in DataView.prototype ) { | |
int = Number( dataView.getBigInt64( offset.value, true ) ); | |
} else { | |
int = dataView.getUint32( offset.value + 4, true ) + Number( dataView.getUint32( offset.value, true ) << 32 ); | |
} | |
offset.value += ULONG_SIZE; | |
return int; | |
}; | |
function parseFloat32( dataView, offset ) { | |
const float = dataView.getFloat32( offset.value, true ); | |
offset.value += FLOAT32_SIZE; | |
return float; | |
} | |
function decodeFloat32( dataView, offset ) { | |
return DataUtils.toHalfFloat( parseFloat32( dataView, offset ) ); | |
} | |
// https://stackoverflow.com/questions/5678432/decompressing-half-precision-floats-in-javascript | |
function decodeFloat16( binary ) { | |
const exponent = ( binary & 0x7C00 ) >> 10, | |
fraction = binary & 0x03FF; | |
return ( binary >> 15 ? - 1 : 1 ) * ( | |
exponent ? | |
( | |
exponent === 0x1F ? | |
fraction ? NaN : Infinity : | |
Math.pow( 2, exponent - 15 ) * ( 1 + fraction / 0x400 ) | |
) : | |
6.103515625e-5 * ( fraction / 0x400 ) | |
); | |
} | |
function parseUint16( dataView, offset ) { | |
const Uint16 = dataView.getUint16( offset.value, true ); | |
offset.value += INT16_SIZE; | |
return Uint16; | |
} | |
function parseFloat16( buffer, offset ) { | |
return decodeFloat16( parseUint16( buffer, offset ) ); | |
} | |
function parseChlist( dataView, buffer, offset, size ) { | |
const startOffset = offset.value; | |
const channels = []; | |
while ( offset.value < ( startOffset + size - 1 ) ) { | |
const name = parseNullTerminatedString( buffer, offset ); | |
const pixelType = parseInt32( dataView, offset ); | |
const pLinear = parseUint8( dataView, offset ); | |
offset.value += 3; // reserved, three chars | |
const xSampling = parseInt32( dataView, offset ); | |
const ySampling = parseInt32( dataView, offset ); | |
channels.push( { | |
name: name, | |
pixelType: pixelType, | |
pLinear: pLinear, | |
xSampling: xSampling, | |
ySampling: ySampling | |
} ); | |
} | |
offset.value += 1; | |
return channels; | |
} | |
function parseChromaticities( dataView, offset ) { | |
const redX = parseFloat32( dataView, offset ); | |
const redY = parseFloat32( dataView, offset ); | |
const greenX = parseFloat32( dataView, offset ); | |
const greenY = parseFloat32( dataView, offset ); | |
const blueX = parseFloat32( dataView, offset ); | |
const blueY = parseFloat32( dataView, offset ); | |
const whiteX = parseFloat32( dataView, offset ); | |
const whiteY = parseFloat32( dataView, offset ); | |
return { redX: redX, redY: redY, greenX: greenX, greenY: greenY, blueX: blueX, blueY: blueY, whiteX: whiteX, whiteY: whiteY }; | |
} | |
function parseCompression( dataView, offset ) { | |
const compressionCodes = [ | |
'NO_COMPRESSION', | |
'RLE_COMPRESSION', | |
'ZIPS_COMPRESSION', | |
'ZIP_COMPRESSION', | |
'PIZ_COMPRESSION', | |
'PXR24_COMPRESSION', | |
'B44_COMPRESSION', | |
'B44A_COMPRESSION', | |
'DWAA_COMPRESSION', | |
'DWAB_COMPRESSION' | |
]; | |
const compression = parseUint8( dataView, offset ); | |
return compressionCodes[ compression ]; | |
} | |
function parseBox2i( dataView, offset ) { | |
const xMin = parseInt32( dataView, offset ); | |
const yMin = parseInt32( dataView, offset ); | |
const xMax = parseInt32( dataView, offset ); | |
const yMax = parseInt32( dataView, offset ); | |
return { xMin: xMin, yMin: yMin, xMax: xMax, yMax: yMax }; | |
} | |
function parseLineOrder( dataView, offset ) { | |
const lineOrders = [ | |
'INCREASING_Y', | |
'DECREASING_Y', | |
'RANDOM_Y', | |
]; | |
const lineOrder = parseUint8( dataView, offset ); | |
return lineOrders[ lineOrder ]; | |
} | |
function parseEnvmap( dataView, offset ) { | |
const envmaps = [ | |
'ENVMAP_LATLONG', | |
'ENVMAP_CUBE' | |
]; | |
const envmap = parseUint8( dataView, offset ); | |
return envmaps[ envmap ]; | |
} | |
function parseTiledesc( dataView, offset ) { | |
const levelModes = [ | |
'ONE_LEVEL', | |
'MIPMAP_LEVELS', | |
'RIPMAP_LEVELS', | |
]; | |
const roundingModes = [ | |
'ROUND_DOWN', | |
'ROUND_UP', | |
]; | |
const xSize = parseUint32( dataView, offset ); | |
const ySize = parseUint32( dataView, offset ); | |
const modes = parseUint8( dataView, offset ); | |
return { | |
xSize: xSize, | |
ySize: ySize, | |
levelMode: levelModes[ modes & 0xf ], | |
roundingMode: roundingModes[ modes >> 4 ] | |
}; | |
} | |
function parseV2f( dataView, offset ) { | |
const x = parseFloat32( dataView, offset ); | |
const y = parseFloat32( dataView, offset ); | |
return [ x, y ]; | |
} | |
function parseV3f( dataView, offset ) { | |
const x = parseFloat32( dataView, offset ); | |
const y = parseFloat32( dataView, offset ); | |
const z = parseFloat32( dataView, offset ); | |
return [ x, y, z ]; | |
} | |
function parseValue( dataView, buffer, offset, type, size ) { | |
if ( type === 'string' || type === 'stringvector' || type === 'iccProfile' ) { | |
return parseFixedLengthString( buffer, offset, size ); | |
} else if ( type === 'chlist' ) { | |
return parseChlist( dataView, buffer, offset, size ); | |
} else if ( type === 'chromaticities' ) { | |
return parseChromaticities( dataView, offset ); | |
} else if ( type === 'compression' ) { | |
return parseCompression( dataView, offset ); | |
} else if ( type === 'box2i' ) { | |
return parseBox2i( dataView, offset ); | |
} else if ( type === 'envmap' ) { | |
return parseEnvmap( dataView, offset ); | |
} else if ( type === 'tiledesc' ) { | |
return parseTiledesc( dataView, offset ); | |
} else if ( type === 'lineOrder' ) { | |
return parseLineOrder( dataView, offset ); | |
} else if ( type === 'float' ) { | |
return parseFloat32( dataView, offset ); | |
} else if ( type === 'v2f' ) { | |
return parseV2f( dataView, offset ); | |
} else if ( type === 'v3f' ) { | |
return parseV3f( dataView, offset ); | |
} else if ( type === 'int' ) { | |
return parseInt32( dataView, offset ); | |
} else if ( type === 'rational' ) { | |
return parseRational( dataView, offset ); | |
} else if ( type === 'timecode' ) { | |
return parseTimecode( dataView, offset ); | |
} else if ( type === 'preview' ) { | |
offset.value += size; | |
return 'skipped'; | |
} else { | |
offset.value += size; | |
return undefined; | |
} | |
} | |
function roundLog2( x, mode ) { | |
const log2 = Math.log2( x ); | |
return mode == 'ROUND_DOWN' ? Math.floor( log2 ) : Math.ceil( log2 ); | |
} | |
function calculateTileLevels( tiledesc, w, h ) { | |
let num = 0; | |
switch ( tiledesc.levelMode ) { | |
case 'ONE_LEVEL': | |
num = 1; | |
break; | |
case 'MIPMAP_LEVELS': | |
num = roundLog2( Math.max( w, h ), tiledesc.roundingMode ) + 1; | |
break; | |
case 'RIPMAP_LEVELS': | |
throw new Error( 'THREE.EXRLoader: RIPMAP_LEVELS tiles currently unsupported.' ); | |
} | |
return num; | |
} | |
function calculateTiles( count, dataSize, size, roundingMode ) { | |
const tiles = new Array( count ); | |
for ( let i = 0; i < count; i ++ ) { | |
const b = ( 1 << i ); | |
let s = ( dataSize / b ) | 0; | |
if ( roundingMode == 'ROUND_UP' && s * b < dataSize ) s += 1; | |
const l = Math.max( s, 1 ); | |
tiles[ i ] = ( ( l + size - 1 ) / size ) | 0; | |
} | |
return tiles; | |
} | |
function parseTiles() { | |
const EXRDecoder = this; | |
const offset = EXRDecoder.offset; | |
const tmpOffset = { value: 0 }; | |
for ( let tile = 0; tile < EXRDecoder.tileCount; tile ++ ) { | |
const tileX = parseInt32( EXRDecoder.viewer, offset ); | |
const tileY = parseInt32( EXRDecoder.viewer, offset ); | |
offset.value += 8; // skip levels - only parsing top-level | |
EXRDecoder.size = parseUint32( EXRDecoder.viewer, offset ); | |
const startX = tileX * EXRDecoder.blockWidth; | |
const startY = tileY * EXRDecoder.blockHeight; | |
EXRDecoder.columns = ( startX + EXRDecoder.blockWidth > EXRDecoder.width ) ? EXRDecoder.width - startX : EXRDecoder.blockWidth; | |
EXRDecoder.lines = ( startY + EXRDecoder.blockHeight > EXRDecoder.height ) ? EXRDecoder.height - startY : EXRDecoder.blockHeight; | |
const bytesBlockLine = EXRDecoder.columns * EXRDecoder.totalBytes; | |
const isCompressed = EXRDecoder.size < EXRDecoder.lines * bytesBlockLine; | |
const viewer = isCompressed ? EXRDecoder.uncompress( EXRDecoder ) : uncompressRAW( EXRDecoder ); | |
offset.value += EXRDecoder.size; | |
for ( let line = 0; line < EXRDecoder.lines; line ++ ) { | |
const lineOffset = line * EXRDecoder.columns * EXRDecoder.totalBytes; | |
for ( let channelID = 0; channelID < EXRDecoder.inputChannels.length; channelID ++ ) { | |
const name = EXRHeader.channels[ channelID ].name; | |
const lOff = EXRDecoder.channelByteOffsets[ name ] * EXRDecoder.columns; | |
const cOff = EXRDecoder.decodeChannels[ name ]; | |
if ( cOff === undefined ) continue; | |
tmpOffset.value = lineOffset + lOff; | |
const outLineOffset = ( EXRDecoder.height - ( 1 + startY + line ) ) * EXRDecoder.outLineWidth; | |
for ( let x = 0; x < EXRDecoder.columns; x ++ ) { | |
const outIndex = outLineOffset + ( x + startX ) * EXRDecoder.outputChannels + cOff; | |
EXRDecoder.byteArray[ outIndex ] = EXRDecoder.getter( viewer, tmpOffset ); | |
} | |
} | |
} | |
} | |
} | |
function parseScanline() { | |
const EXRDecoder = this; | |
const offset = EXRDecoder.offset; | |
const tmpOffset = { value: 0 }; | |
for ( let scanlineBlockIdx = 0; scanlineBlockIdx < EXRDecoder.height / EXRDecoder.blockHeight; scanlineBlockIdx ++ ) { | |
const line = parseInt32( EXRDecoder.viewer, offset ) - EXRHeader.dataWindow.yMin; // line_no | |
EXRDecoder.size = parseUint32( EXRDecoder.viewer, offset ); // data_len | |
EXRDecoder.lines = ( ( line + EXRDecoder.blockHeight > EXRDecoder.height ) ? ( EXRDecoder.height - line ) : EXRDecoder.blockHeight ); | |
const bytesPerLine = EXRDecoder.columns * EXRDecoder.totalBytes; | |
const isCompressed = EXRDecoder.size < EXRDecoder.lines * bytesPerLine; | |
const viewer = isCompressed ? EXRDecoder.uncompress( EXRDecoder ) : uncompressRAW( EXRDecoder ); | |
offset.value += EXRDecoder.size; | |
for ( let line_y = 0; line_y < EXRDecoder.blockHeight; line_y ++ ) { | |
const scan_y = scanlineBlockIdx * EXRDecoder.blockHeight; | |
const true_y = line_y + EXRDecoder.scanOrder( scan_y ); | |
if ( true_y >= EXRDecoder.height ) continue; | |
const lineOffset = line_y * bytesPerLine; | |
const outLineOffset = ( EXRDecoder.height - 1 - true_y ) * EXRDecoder.outLineWidth; | |
for ( let channelID = 0; channelID < EXRDecoder.inputChannels.length; channelID ++ ) { | |
const name = EXRHeader.channels[ channelID ].name; | |
const lOff = EXRDecoder.channelByteOffsets[ name ] * EXRDecoder.columns; | |
const cOff = EXRDecoder.decodeChannels[ name ]; | |
if ( cOff === undefined ) continue; | |
tmpOffset.value = lineOffset + lOff; | |
for ( let x = 0; x < EXRDecoder.columns; x ++ ) { | |
const outIndex = outLineOffset + x * EXRDecoder.outputChannels + cOff; | |
EXRDecoder.byteArray[ outIndex ] = EXRDecoder.getter( viewer, tmpOffset ); | |
} | |
} | |
} | |
} | |
} | |
function parseHeader( dataView, buffer, offset ) { | |
const EXRHeader = {}; | |
if ( dataView.getUint32( 0, true ) != 20000630 ) { // magic | |
throw new Error( 'THREE.EXRLoader: Provided file doesn\'t appear to be in OpenEXR format.' ); | |
} | |
EXRHeader.version = dataView.getUint8( 4 ); | |
const spec = dataView.getUint8( 5 ); // fullMask | |
EXRHeader.spec = { | |
singleTile: !! ( spec & 2 ), | |
longName: !! ( spec & 4 ), | |
deepFormat: !! ( spec & 8 ), | |
multiPart: !! ( spec & 16 ), | |
}; | |
// start of header | |
offset.value = 8; // start at 8 - after pre-amble | |
let keepReading = true; | |
while ( keepReading ) { | |
const attributeName = parseNullTerminatedString( buffer, offset ); | |
if ( attributeName == 0 ) { | |
keepReading = false; | |
} else { | |
const attributeType = parseNullTerminatedString( buffer, offset ); | |
const attributeSize = parseUint32( dataView, offset ); | |
const attributeValue = parseValue( dataView, buffer, offset, attributeType, attributeSize ); | |
if ( attributeValue === undefined ) { | |
console.warn( `THREE.EXRLoader: Skipped unknown header attribute type \'${attributeType}\'.` ); | |
} else { | |
EXRHeader[ attributeName ] = attributeValue; | |
} | |
} | |
} | |
if ( ( spec & ~ 0x06 ) != 0 ) { // unsupported deep-image, multi-part | |
console.error( 'THREE.EXRHeader:', EXRHeader ); | |
throw new Error( 'THREE.EXRLoader: Provided file is currently unsupported.' ); | |
} | |
return EXRHeader; | |
} | |
function setupDecoder( EXRHeader, dataView, uInt8Array, offset, outputType ) { | |
const EXRDecoder = { | |
size: 0, | |
viewer: dataView, | |
array: uInt8Array, | |
offset: offset, | |
width: EXRHeader.dataWindow.xMax - EXRHeader.dataWindow.xMin + 1, | |
height: EXRHeader.dataWindow.yMax - EXRHeader.dataWindow.yMin + 1, | |
inputChannels: EXRHeader.channels, | |
channelByteOffsets: {}, | |
scanOrder: null, | |
totalBytes: null, | |
columns: null, | |
lines: null, | |
type: null, | |
uncompress: null, | |
getter: null, | |
format: null, | |
colorSpace: LinearSRGBColorSpace, | |
}; | |
switch ( EXRHeader.compression ) { | |
case 'NO_COMPRESSION': | |
EXRDecoder.blockHeight = 1; | |
EXRDecoder.uncompress = uncompressRAW; | |
break; | |
case 'RLE_COMPRESSION': | |
EXRDecoder.blockHeight = 1; | |
EXRDecoder.uncompress = uncompressRLE; | |
break; | |
case 'ZIPS_COMPRESSION': | |
EXRDecoder.blockHeight = 1; | |
EXRDecoder.uncompress = uncompressZIP; | |
break; | |
case 'ZIP_COMPRESSION': | |
EXRDecoder.blockHeight = 16; | |
EXRDecoder.uncompress = uncompressZIP; | |
break; | |
case 'PIZ_COMPRESSION': | |
EXRDecoder.blockHeight = 32; | |
EXRDecoder.uncompress = uncompressPIZ; | |
break; | |
case 'PXR24_COMPRESSION': | |
EXRDecoder.blockHeight = 16; | |
EXRDecoder.uncompress = uncompressPXR; | |
break; | |
case 'DWAA_COMPRESSION': | |
EXRDecoder.blockHeight = 32; | |
EXRDecoder.uncompress = uncompressDWA; | |
break; | |
case 'DWAB_COMPRESSION': | |
EXRDecoder.blockHeight = 256; | |
EXRDecoder.uncompress = uncompressDWA; | |
break; | |
default: | |
throw new Error( 'EXRLoader.parse: ' + EXRHeader.compression + ' is unsupported' ); | |
} | |
const channels = {}; | |
for ( const channel of EXRHeader.channels ) { | |
switch ( channel.name ) { | |
case 'Y': | |
case 'R': | |
case 'G': | |
case 'B': | |
case 'A': | |
channels[ channel.name ] = true; | |
EXRDecoder.type = channel.pixelType; | |
} | |
} | |
// RGB images will be converted to RGBA format, preventing software emulation in select devices. | |
let fillAlpha = false; | |
if ( channels.R && channels.G && channels.B ) { | |
fillAlpha = ! channels.A; | |
EXRDecoder.outputChannels = 4; | |
EXRDecoder.decodeChannels = { R: 0, G: 1, B: 2, A: 3 }; | |
} else if ( channels.Y ) { | |
EXRDecoder.outputChannels = 1; | |
EXRDecoder.decodeChannels = { Y: 0 }; | |
} else { | |
throw new Error( 'EXRLoader.parse: file contains unsupported data channels.' ); | |
} | |
if ( EXRDecoder.type == 1 ) { | |
// half | |
switch ( outputType ) { | |
case FloatType: | |
EXRDecoder.getter = parseFloat16; | |
break; | |
case HalfFloatType: | |
EXRDecoder.getter = parseUint16; | |
break; | |
} | |
} else if ( EXRDecoder.type == 2 ) { | |
// float | |
switch ( outputType ) { | |
case FloatType: | |
EXRDecoder.getter = parseFloat32; | |
break; | |
case HalfFloatType: | |
EXRDecoder.getter = decodeFloat32; | |
} | |
} else { | |
throw new Error( 'EXRLoader.parse: unsupported pixelType ' + EXRDecoder.type + ' for ' + EXRHeader.compression + '.' ); | |
} | |
EXRDecoder.columns = EXRDecoder.width; | |
const size = EXRDecoder.width * EXRDecoder.height * EXRDecoder.outputChannels; | |
switch ( outputType ) { | |
case FloatType: | |
EXRDecoder.byteArray = new Float32Array( size ); | |
// Fill initially with 1s for the alpha value if the texture is not RGBA, RGB values will be overwritten | |
if ( fillAlpha ) | |
EXRDecoder.byteArray.fill( 1, 0, size ); | |
break; | |
case HalfFloatType: | |
EXRDecoder.byteArray = new Uint16Array( size ); | |
if ( fillAlpha ) | |
EXRDecoder.byteArray.fill( 0x3C00, 0, size ); // Uint16Array holds half float data, 0x3C00 is 1 | |
break; | |
default: | |
console.error( 'THREE.EXRLoader: unsupported type: ', outputType ); | |
break; | |
} | |
let byteOffset = 0; | |
for ( const channel of EXRHeader.channels ) { | |
if ( EXRDecoder.decodeChannels[ channel.name ] !== undefined ) { | |
EXRDecoder.channelByteOffsets[ channel.name ] = byteOffset; | |
} | |
byteOffset += channel.pixelType * 2; | |
} | |
EXRDecoder.totalBytes = byteOffset; | |
EXRDecoder.outLineWidth = EXRDecoder.width * EXRDecoder.outputChannels; | |
if ( EXRHeader.lineOrder === 'INCREASING_Y' ) { | |
EXRDecoder.scanOrder = ( y ) => y; | |
} else { | |
EXRDecoder.scanOrder = ( y ) => EXRDecoder.height - 1 - y; | |
} | |
if ( EXRDecoder.outputChannels == 4 ) { | |
EXRDecoder.format = RGBAFormat; | |
EXRDecoder.colorSpace = LinearSRGBColorSpace; | |
} else { | |
EXRDecoder.format = RedFormat; | |
EXRDecoder.colorSpace = NoColorSpace; | |
} | |
if ( EXRHeader.spec.singleTile ) { | |
EXRDecoder.blockHeight = EXRHeader.tiles.ySize; | |
EXRDecoder.blockWidth = EXRHeader.tiles.xSize; | |
const numXLevels = calculateTileLevels( EXRHeader.tiles, EXRDecoder.width, EXRDecoder.height ); | |
// const numYLevels = calculateTileLevels( EXRHeader.tiles, EXRDecoder.width, EXRDecoder.height ); | |
const numXTiles = calculateTiles( numXLevels, EXRDecoder.width, EXRHeader.tiles.xSize, EXRHeader.tiles.roundingMode ); | |
const numYTiles = calculateTiles( numXLevels, EXRDecoder.height, EXRHeader.tiles.ySize, EXRHeader.tiles.roundingMode ); | |
EXRDecoder.tileCount = numXTiles[ 0 ] * numYTiles[ 0 ]; | |
for ( let l = 0; l < numXLevels; l ++ ) | |
for ( let y = 0; y < numYTiles[ l ]; y ++ ) | |
for ( let x = 0; x < numXTiles[ l ]; x ++ ) | |
parseInt64( dataView, offset ); // tileOffset | |
EXRDecoder.decode = parseTiles.bind( EXRDecoder ); | |
} else { | |
EXRDecoder.blockWidth = EXRDecoder.width; | |
const blockCount = Math.ceil( EXRDecoder.height / EXRDecoder.blockHeight ); | |
for ( let i = 0; i < blockCount; i ++ ) | |
parseInt64( dataView, offset ); // scanlineOffset | |
EXRDecoder.decode = parseScanline.bind( EXRDecoder ); | |
} | |
return EXRDecoder; | |
} | |
// start parsing file [START] | |
const offset = { value: 0 }; | |
const bufferDataView = new DataView( buffer ); | |
const uInt8Array = new Uint8Array( buffer ); | |
// get header information and validate format. | |
const EXRHeader = parseHeader( bufferDataView, buffer, offset ); | |
// get input compression information and prepare decoding. | |
const EXRDecoder = setupDecoder( EXRHeader, bufferDataView, uInt8Array, offset, this.type ); | |
// parse input data | |
EXRDecoder.decode(); | |
return { | |
header: EXRHeader, | |
width: EXRDecoder.width, | |
height: EXRDecoder.height, | |
data: EXRDecoder.byteArray, | |
format: EXRDecoder.format, | |
colorSpace: EXRDecoder.colorSpace, | |
type: this.type, | |
}; | |
} | |
setDataType( value ) { | |
this.type = value; | |
return this; | |
} | |
load( url, onLoad, onProgress, onError ) { | |
function onLoadCallback( texture, texData ) { | |
texture.colorSpace = texData.colorSpace; | |
texture.minFilter = LinearFilter; | |
texture.magFilter = LinearFilter; | |
texture.generateMipmaps = false; | |
texture.flipY = false; | |
if ( onLoad ) onLoad( texture, texData ); | |
} | |
return super.load( url, onLoadCallback, onProgress, onError ); | |
} | |
} | |
export { EXRLoader }; | |