Spaces:
Running
Running
import { | |
AmbientLight, | |
AnimationClip, | |
Bone, | |
BufferGeometry, | |
ClampToEdgeWrapping, | |
Color, | |
ColorManagement, | |
DirectionalLight, | |
EquirectangularReflectionMapping, | |
Euler, | |
FileLoader, | |
Float32BufferAttribute, | |
Group, | |
Line, | |
LineBasicMaterial, | |
Loader, | |
LoaderUtils, | |
MathUtils, | |
Matrix3, | |
Matrix4, | |
Mesh, | |
MeshLambertMaterial, | |
MeshPhongMaterial, | |
NumberKeyframeTrack, | |
Object3D, | |
PerspectiveCamera, | |
PointLight, | |
PropertyBinding, | |
Quaternion, | |
QuaternionKeyframeTrack, | |
RepeatWrapping, | |
SRGBColorSpace, | |
ShapeUtils, | |
Skeleton, | |
SkinnedMesh, | |
SpotLight, | |
Texture, | |
TextureLoader, | |
Uint16BufferAttribute, | |
Vector2, | |
Vector3, | |
Vector4, | |
VectorKeyframeTrack | |
} from 'three'; | |
import * as fflate from '../libs/fflate.module.js'; | |
import { NURBSCurve } from '../curves/NURBSCurve.js'; | |
/** | |
* Loader loads FBX file and generates Group representing FBX scene. | |
* Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format | |
* Versions lower than this may load but will probably have errors | |
* | |
* Needs Support: | |
* Morph normals / blend shape normals | |
* | |
* FBX format references: | |
* https://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference) | |
* | |
* Binary format specification: | |
* https://code.blender.org/2013/08/fbx-binary-file-format-specification/ | |
*/ | |
let fbxTree; | |
let connections; | |
let sceneGraph; | |
class FBXLoader extends Loader { | |
constructor( manager ) { | |
super( manager ); | |
} | |
load( url, onLoad, onProgress, onError ) { | |
const scope = this; | |
const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path; | |
const loader = new FileLoader( this.manager ); | |
loader.setPath( scope.path ); | |
loader.setResponseType( 'arraybuffer' ); | |
loader.setRequestHeader( scope.requestHeader ); | |
loader.setWithCredentials( scope.withCredentials ); | |
loader.load( url, function ( buffer ) { | |
try { | |
onLoad( scope.parse( buffer, path ) ); | |
} catch ( e ) { | |
if ( onError ) { | |
onError( e ); | |
} else { | |
console.error( e ); | |
} | |
scope.manager.itemError( url ); | |
} | |
}, onProgress, onError ); | |
} | |
parse( FBXBuffer, path ) { | |
if ( isFbxFormatBinary( FBXBuffer ) ) { | |
fbxTree = new BinaryParser().parse( FBXBuffer ); | |
} else { | |
const FBXText = convertArrayBufferToString( FBXBuffer ); | |
if ( ! isFbxFormatASCII( FBXText ) ) { | |
throw new Error( 'THREE.FBXLoader: Unknown format.' ); | |
} | |
if ( getFbxVersion( FBXText ) < 7000 ) { | |
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) ); | |
} | |
fbxTree = new TextParser().parse( FBXText ); | |
} | |
// console.log( fbxTree ); | |
const textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin ); | |
return new FBXTreeParser( textureLoader, this.manager ).parse( fbxTree ); | |
} | |
} | |
// Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group | |
class FBXTreeParser { | |
constructor( textureLoader, manager ) { | |
this.textureLoader = textureLoader; | |
this.manager = manager; | |
} | |
parse() { | |
connections = this.parseConnections(); | |
const images = this.parseImages(); | |
const textures = this.parseTextures( images ); | |
const materials = this.parseMaterials( textures ); | |
const deformers = this.parseDeformers(); | |
const geometryMap = new GeometryParser().parse( deformers ); | |
this.parseScene( deformers, geometryMap, materials ); | |
return sceneGraph; | |
} | |
// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) | |
// and details the connection type | |
parseConnections() { | |
const connectionMap = new Map(); | |
if ( 'Connections' in fbxTree ) { | |
const rawConnections = fbxTree.Connections.connections; | |
rawConnections.forEach( function ( rawConnection ) { | |
const fromID = rawConnection[ 0 ]; | |
const toID = rawConnection[ 1 ]; | |
const relationship = rawConnection[ 2 ]; | |
if ( ! connectionMap.has( fromID ) ) { | |
connectionMap.set( fromID, { | |
parents: [], | |
children: [] | |
} ); | |
} | |
const parentRelationship = { ID: toID, relationship: relationship }; | |
connectionMap.get( fromID ).parents.push( parentRelationship ); | |
if ( ! connectionMap.has( toID ) ) { | |
connectionMap.set( toID, { | |
parents: [], | |
children: [] | |
} ); | |
} | |
const childRelationship = { ID: fromID, relationship: relationship }; | |
connectionMap.get( toID ).children.push( childRelationship ); | |
} ); | |
} | |
return connectionMap; | |
} | |
// Parse FBXTree.Objects.Video for embedded image data | |
// These images are connected to textures in FBXTree.Objects.Textures | |
// via FBXTree.Connections. | |
parseImages() { | |
const images = {}; | |
const blobs = {}; | |
if ( 'Video' in fbxTree.Objects ) { | |
const videoNodes = fbxTree.Objects.Video; | |
for ( const nodeID in videoNodes ) { | |
const videoNode = videoNodes[ nodeID ]; | |
const id = parseInt( nodeID ); | |
images[ id ] = videoNode.RelativeFilename || videoNode.Filename; | |
// raw image data is in videoNode.Content | |
if ( 'Content' in videoNode ) { | |
const arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 ); | |
const base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' ); | |
if ( arrayBufferContent || base64Content ) { | |
const image = this.parseImage( videoNodes[ nodeID ] ); | |
blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image; | |
} | |
} | |
} | |
} | |
for ( const id in images ) { | |
const filename = images[ id ]; | |
if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ]; | |
else images[ id ] = images[ id ].split( '\\' ).pop(); | |
} | |
return images; | |
} | |
// Parse embedded image data in FBXTree.Video.Content | |
parseImage( videoNode ) { | |
const content = videoNode.Content; | |
const fileName = videoNode.RelativeFilename || videoNode.Filename; | |
const extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase(); | |
let type; | |
switch ( extension ) { | |
case 'bmp': | |
type = 'image/bmp'; | |
break; | |
case 'jpg': | |
case 'jpeg': | |
type = 'image/jpeg'; | |
break; | |
case 'png': | |
type = 'image/png'; | |
break; | |
case 'tif': | |
type = 'image/tiff'; | |
break; | |
case 'tga': | |
if ( this.manager.getHandler( '.tga' ) === null ) { | |
console.warn( 'FBXLoader: TGA loader not found, skipping ', fileName ); | |
} | |
type = 'image/tga'; | |
break; | |
default: | |
console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' ); | |
return; | |
} | |
if ( typeof content === 'string' ) { // ASCII format | |
return 'data:' + type + ';base64,' + content; | |
} else { // Binary Format | |
const array = new Uint8Array( content ); | |
return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) ); | |
} | |
} | |
// Parse nodes in FBXTree.Objects.Texture | |
// These contain details such as UV scaling, cropping, rotation etc and are connected | |
// to images in FBXTree.Objects.Video | |
parseTextures( images ) { | |
const textureMap = new Map(); | |
if ( 'Texture' in fbxTree.Objects ) { | |
const textureNodes = fbxTree.Objects.Texture; | |
for ( const nodeID in textureNodes ) { | |
const texture = this.parseTexture( textureNodes[ nodeID ], images ); | |
textureMap.set( parseInt( nodeID ), texture ); | |
} | |
} | |
return textureMap; | |
} | |
// Parse individual node in FBXTree.Objects.Texture | |
parseTexture( textureNode, images ) { | |
const texture = this.loadTexture( textureNode, images ); | |
texture.ID = textureNode.id; | |
texture.name = textureNode.attrName; | |
const wrapModeU = textureNode.WrapModeU; | |
const wrapModeV = textureNode.WrapModeV; | |
const valueU = wrapModeU !== undefined ? wrapModeU.value : 0; | |
const valueV = wrapModeV !== undefined ? wrapModeV.value : 0; | |
// http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a | |
// 0: repeat(default), 1: clamp | |
texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping; | |
texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping; | |
if ( 'Scaling' in textureNode ) { | |
const values = textureNode.Scaling.value; | |
texture.repeat.x = values[ 0 ]; | |
texture.repeat.y = values[ 1 ]; | |
} | |
if ( 'Translation' in textureNode ) { | |
const values = textureNode.Translation.value; | |
texture.offset.x = values[ 0 ]; | |
texture.offset.y = values[ 1 ]; | |
} | |
return texture; | |
} | |
// load a texture specified as a blob or data URI, or via an external URL using TextureLoader | |
loadTexture( textureNode, images ) { | |
const nonNativeExtensions = new Set( [ 'tga', 'tif', 'tiff', 'exr', 'dds', 'hdr', 'ktx2' ] ); | |
const extension = textureNode.FileName.split( '.' ).pop().toLowerCase(); | |
const loader = nonNativeExtensions.has( extension ) ? this.manager.getHandler( `.${extension}` ) : this.textureLoader; | |
if ( ! loader ) { | |
console.warn( | |
`FBXLoader: ${extension.toUpperCase()} loader not found, creating placeholder texture for`, | |
textureNode.RelativeFilename | |
); | |
return new Texture(); | |
} | |
const loaderPath = loader.path; | |
if ( ! loaderPath ) { | |
loader.setPath( this.textureLoader.path ); | |
} | |
const children = connections.get( textureNode.id ).children; | |
let fileName; | |
if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) { | |
fileName = images[ children[ 0 ].ID ]; | |
if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) { | |
loader.setPath( undefined ); | |
} | |
} | |
const texture = loader.load( fileName ); | |
// revert to initial path | |
loader.setPath( loaderPath ); | |
return texture; | |
} | |
// Parse nodes in FBXTree.Objects.Material | |
parseMaterials( textureMap ) { | |
const materialMap = new Map(); | |
if ( 'Material' in fbxTree.Objects ) { | |
const materialNodes = fbxTree.Objects.Material; | |
for ( const nodeID in materialNodes ) { | |
const material = this.parseMaterial( materialNodes[ nodeID ], textureMap ); | |
if ( material !== null ) materialMap.set( parseInt( nodeID ), material ); | |
} | |
} | |
return materialMap; | |
} | |
// Parse single node in FBXTree.Objects.Material | |
// Materials are connected to texture maps in FBXTree.Objects.Textures | |
// FBX format currently only supports Lambert and Phong shading models | |
parseMaterial( materialNode, textureMap ) { | |
const ID = materialNode.id; | |
const name = materialNode.attrName; | |
let type = materialNode.ShadingModel; | |
// Case where FBX wraps shading model in property object. | |
if ( typeof type === 'object' ) { | |
type = type.value; | |
} | |
// Ignore unused materials which don't have any connections. | |
if ( ! connections.has( ID ) ) return null; | |
const parameters = this.parseParameters( materialNode, textureMap, ID ); | |
let material; | |
switch ( type.toLowerCase() ) { | |
case 'phong': | |
material = new MeshPhongMaterial(); | |
break; | |
case 'lambert': | |
material = new MeshLambertMaterial(); | |
break; | |
default: | |
console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type ); | |
material = new MeshPhongMaterial(); | |
break; | |
} | |
material.setValues( parameters ); | |
material.name = name; | |
return material; | |
} | |
// Parse FBX material and return parameters suitable for a three.js material | |
// Also parse the texture map and return any textures associated with the material | |
parseParameters( materialNode, textureMap, ID ) { | |
const parameters = {}; | |
if ( materialNode.BumpFactor ) { | |
parameters.bumpScale = materialNode.BumpFactor.value; | |
} | |
if ( materialNode.Diffuse ) { | |
parameters.color = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.Diffuse.value ), SRGBColorSpace ); | |
} else if ( materialNode.DiffuseColor && ( materialNode.DiffuseColor.type === 'Color' || materialNode.DiffuseColor.type === 'ColorRGB' ) ) { | |
// The blender exporter exports diffuse here instead of in materialNode.Diffuse | |
parameters.color = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.DiffuseColor.value ), SRGBColorSpace ); | |
} | |
if ( materialNode.DisplacementFactor ) { | |
parameters.displacementScale = materialNode.DisplacementFactor.value; | |
} | |
if ( materialNode.Emissive ) { | |
parameters.emissive = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.Emissive.value ), SRGBColorSpace ); | |
} else if ( materialNode.EmissiveColor && ( materialNode.EmissiveColor.type === 'Color' || materialNode.EmissiveColor.type === 'ColorRGB' ) ) { | |
// The blender exporter exports emissive color here instead of in materialNode.Emissive | |
parameters.emissive = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.EmissiveColor.value ), SRGBColorSpace ); | |
} | |
if ( materialNode.EmissiveFactor ) { | |
parameters.emissiveIntensity = parseFloat( materialNode.EmissiveFactor.value ); | |
} | |
// the transparency handling is implemented based on Blender/Unity's approach: https://github.com/sobotka/blender-addons/blob/7d80f2f97161fc8e353a657b179b9aa1f8e5280b/io_scene_fbx/import_fbx.py#L1444-L1459 | |
parameters.opacity = 1 - ( materialNode.TransparencyFactor ? parseFloat( materialNode.TransparencyFactor.value ) : 0 ); | |
if ( parameters.opacity === 1 || parameters.opacity === 0 ) { | |
parameters.opacity = ( materialNode.Opacity ? parseFloat( materialNode.Opacity.value ) : null ); | |
if ( parameters.opacity === null ) { | |
parameters.opacity = 1 - ( materialNode.TransparentColor ? parseFloat( materialNode.TransparentColor.value[ 0 ] ) : 0 ); | |
} | |
} | |
if ( parameters.opacity < 1.0 ) { | |
parameters.transparent = true; | |
} | |
if ( materialNode.ReflectionFactor ) { | |
parameters.reflectivity = materialNode.ReflectionFactor.value; | |
} | |
if ( materialNode.Shininess ) { | |
parameters.shininess = materialNode.Shininess.value; | |
} | |
if ( materialNode.Specular ) { | |
parameters.specular = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.Specular.value ), SRGBColorSpace ); | |
} else if ( materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color' ) { | |
// The blender exporter exports specular color here instead of in materialNode.Specular | |
parameters.specular = ColorManagement.toWorkingColorSpace( new Color().fromArray( materialNode.SpecularColor.value ), SRGBColorSpace ); | |
} | |
const scope = this; | |
connections.get( ID ).children.forEach( function ( child ) { | |
const type = child.relationship; | |
switch ( type ) { | |
case 'Bump': | |
parameters.bumpMap = scope.getTexture( textureMap, child.ID ); | |
break; | |
case 'Maya|TEX_ao_map': | |
parameters.aoMap = scope.getTexture( textureMap, child.ID ); | |
break; | |
case 'DiffuseColor': | |
case 'Maya|TEX_color_map': | |
parameters.map = scope.getTexture( textureMap, child.ID ); | |
if ( parameters.map !== undefined ) { | |
parameters.map.colorSpace = SRGBColorSpace; | |
} | |
break; | |
case 'DisplacementColor': | |
parameters.displacementMap = scope.getTexture( textureMap, child.ID ); | |
break; | |
case 'EmissiveColor': | |
parameters.emissiveMap = scope.getTexture( textureMap, child.ID ); | |
if ( parameters.emissiveMap !== undefined ) { | |
parameters.emissiveMap.colorSpace = SRGBColorSpace; | |
} | |
break; | |
case 'NormalMap': | |
case 'Maya|TEX_normal_map': | |
parameters.normalMap = scope.getTexture( textureMap, child.ID ); | |
break; | |
case 'ReflectionColor': | |
parameters.envMap = scope.getTexture( textureMap, child.ID ); | |
if ( parameters.envMap !== undefined ) { | |
parameters.envMap.mapping = EquirectangularReflectionMapping; | |
parameters.envMap.colorSpace = SRGBColorSpace; | |
} | |
break; | |
case 'SpecularColor': | |
parameters.specularMap = scope.getTexture( textureMap, child.ID ); | |
if ( parameters.specularMap !== undefined ) { | |
parameters.specularMap.colorSpace = SRGBColorSpace; | |
} | |
break; | |
case 'TransparentColor': | |
case 'TransparencyFactor': | |
parameters.alphaMap = scope.getTexture( textureMap, child.ID ); | |
parameters.transparent = true; | |
break; | |
case 'AmbientColor': | |
case 'ShininessExponent': // AKA glossiness map | |
case 'SpecularFactor': // AKA specularLevel | |
case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor | |
default: | |
console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type ); | |
break; | |
} | |
} ); | |
return parameters; | |
} | |
// get a texture from the textureMap for use by a material. | |
getTexture( textureMap, id ) { | |
// if the texture is a layered texture, just use the first layer and issue a warning | |
if ( 'LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture ) { | |
console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' ); | |
id = connections.get( id ).children[ 0 ].ID; | |
} | |
return textureMap.get( id ); | |
} | |
// Parse nodes in FBXTree.Objects.Deformer | |
// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here | |
// Generates map of Skeleton-like objects for use later when generating and binding skeletons. | |
parseDeformers() { | |
const skeletons = {}; | |
const morphTargets = {}; | |
if ( 'Deformer' in fbxTree.Objects ) { | |
const DeformerNodes = fbxTree.Objects.Deformer; | |
for ( const nodeID in DeformerNodes ) { | |
const deformerNode = DeformerNodes[ nodeID ]; | |
const relationships = connections.get( parseInt( nodeID ) ); | |
if ( deformerNode.attrType === 'Skin' ) { | |
const skeleton = this.parseSkeleton( relationships, DeformerNodes ); | |
skeleton.ID = nodeID; | |
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' ); | |
skeleton.geometryID = relationships.parents[ 0 ].ID; | |
skeletons[ nodeID ] = skeleton; | |
} else if ( deformerNode.attrType === 'BlendShape' ) { | |
const morphTarget = { | |
id: nodeID, | |
}; | |
morphTarget.rawTargets = this.parseMorphTargets( relationships, DeformerNodes ); | |
morphTarget.id = nodeID; | |
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' ); | |
morphTargets[ nodeID ] = morphTarget; | |
} | |
} | |
} | |
return { | |
skeletons: skeletons, | |
morphTargets: morphTargets, | |
}; | |
} | |
// Parse single nodes in FBXTree.Objects.Deformer | |
// The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster' | |
// Each skin node represents a skeleton and each cluster node represents a bone | |
parseSkeleton( relationships, deformerNodes ) { | |
const rawBones = []; | |
relationships.children.forEach( function ( child ) { | |
const boneNode = deformerNodes[ child.ID ]; | |
if ( boneNode.attrType !== 'Cluster' ) return; | |
const rawBone = { | |
ID: child.ID, | |
indices: [], | |
weights: [], | |
transformLink: new Matrix4().fromArray( boneNode.TransformLink.a ), | |
// transform: new Matrix4().fromArray( boneNode.Transform.a ), | |
// linkMode: boneNode.Mode, | |
}; | |
if ( 'Indexes' in boneNode ) { | |
rawBone.indices = boneNode.Indexes.a; | |
rawBone.weights = boneNode.Weights.a; | |
} | |
rawBones.push( rawBone ); | |
} ); | |
return { | |
rawBones: rawBones, | |
bones: [] | |
}; | |
} | |
// The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel" | |
parseMorphTargets( relationships, deformerNodes ) { | |
const rawMorphTargets = []; | |
for ( let i = 0; i < relationships.children.length; i ++ ) { | |
const child = relationships.children[ i ]; | |
const morphTargetNode = deformerNodes[ child.ID ]; | |
const rawMorphTarget = { | |
name: morphTargetNode.attrName, | |
initialWeight: morphTargetNode.DeformPercent, | |
id: morphTargetNode.id, | |
fullWeights: morphTargetNode.FullWeights.a | |
}; | |
if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return; | |
rawMorphTarget.geoID = connections.get( parseInt( child.ID ) ).children.filter( function ( child ) { | |
return child.relationship === undefined; | |
} )[ 0 ].ID; | |
rawMorphTargets.push( rawMorphTarget ); | |
} | |
return rawMorphTargets; | |
} | |
// create the main Group() to be returned by the loader | |
parseScene( deformers, geometryMap, materialMap ) { | |
sceneGraph = new Group(); | |
const modelMap = this.parseModels( deformers.skeletons, geometryMap, materialMap ); | |
const modelNodes = fbxTree.Objects.Model; | |
const scope = this; | |
modelMap.forEach( function ( model ) { | |
const modelNode = modelNodes[ model.ID ]; | |
scope.setLookAtProperties( model, modelNode ); | |
const parentConnections = connections.get( model.ID ).parents; | |
parentConnections.forEach( function ( connection ) { | |
const parent = modelMap.get( connection.ID ); | |
if ( parent !== undefined ) parent.add( model ); | |
} ); | |
if ( model.parent === null ) { | |
sceneGraph.add( model ); | |
} | |
} ); | |
this.bindSkeleton( deformers.skeletons, geometryMap, modelMap ); | |
this.addGlobalSceneSettings(); | |
sceneGraph.traverse( function ( node ) { | |
if ( node.userData.transformData ) { | |
if ( node.parent ) { | |
node.userData.transformData.parentMatrix = node.parent.matrix; | |
node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld; | |
} | |
const transform = generateTransform( node.userData.transformData ); | |
node.applyMatrix4( transform ); | |
node.updateWorldMatrix(); | |
} | |
} ); | |
const animations = new AnimationParser().parse(); | |
// if all the models where already combined in a single group, just return that | |
if ( sceneGraph.children.length === 1 && sceneGraph.children[ 0 ].isGroup ) { | |
sceneGraph.children[ 0 ].animations = animations; | |
sceneGraph = sceneGraph.children[ 0 ]; | |
} | |
sceneGraph.animations = animations; | |
} | |
// parse nodes in FBXTree.Objects.Model | |
parseModels( skeletons, geometryMap, materialMap ) { | |
const modelMap = new Map(); | |
const modelNodes = fbxTree.Objects.Model; | |
for ( const nodeID in modelNodes ) { | |
const id = parseInt( nodeID ); | |
const node = modelNodes[ nodeID ]; | |
const relationships = connections.get( id ); | |
let model = this.buildSkeleton( relationships, skeletons, id, node.attrName ); | |
if ( ! model ) { | |
switch ( node.attrType ) { | |
case 'Camera': | |
model = this.createCamera( relationships ); | |
break; | |
case 'Light': | |
model = this.createLight( relationships ); | |
break; | |
case 'Mesh': | |
model = this.createMesh( relationships, geometryMap, materialMap ); | |
break; | |
case 'NurbsCurve': | |
model = this.createCurve( relationships, geometryMap ); | |
break; | |
case 'LimbNode': | |
case 'Root': | |
model = new Bone(); | |
break; | |
case 'Null': | |
default: | |
model = new Group(); | |
break; | |
} | |
model.name = node.attrName ? PropertyBinding.sanitizeNodeName( node.attrName ) : ''; | |
model.userData.originalName = node.attrName; | |
model.ID = id; | |
} | |
this.getTransformData( model, node ); | |
modelMap.set( id, model ); | |
} | |
return modelMap; | |
} | |
buildSkeleton( relationships, skeletons, id, name ) { | |
let bone = null; | |
relationships.parents.forEach( function ( parent ) { | |
for ( const ID in skeletons ) { | |
const skeleton = skeletons[ ID ]; | |
skeleton.rawBones.forEach( function ( rawBone, i ) { | |
if ( rawBone.ID === parent.ID ) { | |
const subBone = bone; | |
bone = new Bone(); | |
bone.matrixWorld.copy( rawBone.transformLink ); | |
// set name and id here - otherwise in cases where "subBone" is created it will not have a name / id | |
bone.name = name ? PropertyBinding.sanitizeNodeName( name ) : ''; | |
bone.userData.originalName = name; | |
bone.ID = id; | |
skeleton.bones[ i ] = bone; | |
// In cases where a bone is shared between multiple meshes | |
// duplicate the bone here and and it as a child of the first bone | |
if ( subBone !== null ) { | |
bone.add( subBone ); | |
} | |
} | |
} ); | |
} | |
} ); | |
return bone; | |
} | |
// create a PerspectiveCamera or OrthographicCamera | |
createCamera( relationships ) { | |
let model; | |
let cameraAttribute; | |
relationships.children.forEach( function ( child ) { | |
const attr = fbxTree.Objects.NodeAttribute[ child.ID ]; | |
if ( attr !== undefined ) { | |
cameraAttribute = attr; | |
} | |
} ); | |
if ( cameraAttribute === undefined ) { | |
model = new Object3D(); | |
} else { | |
let type = 0; | |
if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) { | |
type = 1; | |
} | |
let nearClippingPlane = 1; | |
if ( cameraAttribute.NearPlane !== undefined ) { | |
nearClippingPlane = cameraAttribute.NearPlane.value / 1000; | |
} | |
let farClippingPlane = 1000; | |
if ( cameraAttribute.FarPlane !== undefined ) { | |
farClippingPlane = cameraAttribute.FarPlane.value / 1000; | |
} | |
let width = window.innerWidth; | |
let height = window.innerHeight; | |
if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) { | |
width = cameraAttribute.AspectWidth.value; | |
height = cameraAttribute.AspectHeight.value; | |
} | |
const aspect = width / height; | |
let fov = 45; | |
if ( cameraAttribute.FieldOfView !== undefined ) { | |
fov = cameraAttribute.FieldOfView.value; | |
} | |
const focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null; | |
switch ( type ) { | |
case 0: // Perspective | |
model = new PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane ); | |
if ( focalLength !== null ) model.setFocalLength( focalLength ); | |
break; | |
case 1: // Orthographic | |
console.warn( 'THREE.FBXLoader: Orthographic cameras not supported yet.' ); | |
model = new Object3D(); | |
break; | |
default: | |
console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' ); | |
model = new Object3D(); | |
break; | |
} | |
} | |
return model; | |
} | |
// Create a DirectionalLight, PointLight or SpotLight | |
createLight( relationships ) { | |
let model; | |
let lightAttribute; | |
relationships.children.forEach( function ( child ) { | |
const attr = fbxTree.Objects.NodeAttribute[ child.ID ]; | |
if ( attr !== undefined ) { | |
lightAttribute = attr; | |
} | |
} ); | |
if ( lightAttribute === undefined ) { | |
model = new Object3D(); | |
} else { | |
let type; | |
// LightType can be undefined for Point lights | |
if ( lightAttribute.LightType === undefined ) { | |
type = 0; | |
} else { | |
type = lightAttribute.LightType.value; | |
} | |
let color = 0xffffff; | |
if ( lightAttribute.Color !== undefined ) { | |
color = ColorManagement.toWorkingColorSpace( new Color().fromArray( lightAttribute.Color.value ), SRGBColorSpace ); | |
} | |
let intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100; | |
// light disabled | |
if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) { | |
intensity = 0; | |
} | |
let distance = 0; | |
if ( lightAttribute.FarAttenuationEnd !== undefined ) { | |
if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) { | |
distance = 0; | |
} else { | |
distance = lightAttribute.FarAttenuationEnd.value; | |
} | |
} | |
// TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd? | |
const decay = 1; | |
switch ( type ) { | |
case 0: // Point | |
model = new PointLight( color, intensity, distance, decay ); | |
break; | |
case 1: // Directional | |
model = new DirectionalLight( color, intensity ); | |
break; | |
case 2: // Spot | |
let angle = Math.PI / 3; | |
if ( lightAttribute.InnerAngle !== undefined ) { | |
angle = MathUtils.degToRad( lightAttribute.InnerAngle.value ); | |
} | |
let penumbra = 0; | |
if ( lightAttribute.OuterAngle !== undefined ) { | |
// TODO: this is not correct - FBX calculates outer and inner angle in degrees | |
// with OuterAngle > InnerAngle && OuterAngle <= Math.PI | |
// while three.js uses a penumbra between (0, 1) to attenuate the inner angle | |
penumbra = MathUtils.degToRad( lightAttribute.OuterAngle.value ); | |
penumbra = Math.max( penumbra, 1 ); | |
} | |
model = new SpotLight( color, intensity, distance, angle, penumbra, decay ); | |
break; | |
default: | |
console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.' ); | |
model = new PointLight( color, intensity ); | |
break; | |
} | |
if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) { | |
model.castShadow = true; | |
} | |
} | |
return model; | |
} | |
createMesh( relationships, geometryMap, materialMap ) { | |
let model; | |
let geometry = null; | |
let material = null; | |
const materials = []; | |
// get geometry and materials(s) from connections | |
relationships.children.forEach( function ( child ) { | |
if ( geometryMap.has( child.ID ) ) { | |
geometry = geometryMap.get( child.ID ); | |
} | |
if ( materialMap.has( child.ID ) ) { | |
materials.push( materialMap.get( child.ID ) ); | |
} | |
} ); | |
if ( materials.length > 1 ) { | |
material = materials; | |
} else if ( materials.length > 0 ) { | |
material = materials[ 0 ]; | |
} else { | |
material = new MeshPhongMaterial( { | |
name: Loader.DEFAULT_MATERIAL_NAME, | |
color: 0xcccccc | |
} ); | |
materials.push( material ); | |
} | |
if ( 'color' in geometry.attributes ) { | |
materials.forEach( function ( material ) { | |
material.vertexColors = true; | |
} ); | |
} | |
if ( geometry.FBX_Deformer ) { | |
model = new SkinnedMesh( geometry, material ); | |
model.normalizeSkinWeights(); | |
} else { | |
model = new Mesh( geometry, material ); | |
} | |
return model; | |
} | |
createCurve( relationships, geometryMap ) { | |
const geometry = relationships.children.reduce( function ( geo, child ) { | |
if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID ); | |
return geo; | |
}, null ); | |
// FBX does not list materials for Nurbs lines, so we'll just put our own in here. | |
const material = new LineBasicMaterial( { | |
name: Loader.DEFAULT_MATERIAL_NAME, | |
color: 0x3300ff, | |
linewidth: 1 | |
} ); | |
return new Line( geometry, material ); | |
} | |
// parse the model node for transform data | |
getTransformData( model, modelNode ) { | |
const transformData = {}; | |
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value ); | |
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value ); | |
else transformData.eulerOrder = getEulerOrder( 0 ); | |
if ( 'Lcl_Translation' in modelNode ) transformData.translation = modelNode.Lcl_Translation.value; | |
if ( 'PreRotation' in modelNode ) transformData.preRotation = modelNode.PreRotation.value; | |
if ( 'Lcl_Rotation' in modelNode ) transformData.rotation = modelNode.Lcl_Rotation.value; | |
if ( 'PostRotation' in modelNode ) transformData.postRotation = modelNode.PostRotation.value; | |
if ( 'Lcl_Scaling' in modelNode ) transformData.scale = modelNode.Lcl_Scaling.value; | |
if ( 'ScalingOffset' in modelNode ) transformData.scalingOffset = modelNode.ScalingOffset.value; | |
if ( 'ScalingPivot' in modelNode ) transformData.scalingPivot = modelNode.ScalingPivot.value; | |
if ( 'RotationOffset' in modelNode ) transformData.rotationOffset = modelNode.RotationOffset.value; | |
if ( 'RotationPivot' in modelNode ) transformData.rotationPivot = modelNode.RotationPivot.value; | |
model.userData.transformData = transformData; | |
} | |
setLookAtProperties( model, modelNode ) { | |
if ( 'LookAtProperty' in modelNode ) { | |
const children = connections.get( model.ID ).children; | |
children.forEach( function ( child ) { | |
if ( child.relationship === 'LookAtProperty' ) { | |
const lookAtTarget = fbxTree.Objects.Model[ child.ID ]; | |
if ( 'Lcl_Translation' in lookAtTarget ) { | |
const pos = lookAtTarget.Lcl_Translation.value; | |
// DirectionalLight, SpotLight | |
if ( model.target !== undefined ) { | |
model.target.position.fromArray( pos ); | |
sceneGraph.add( model.target ); | |
} else { // Cameras and other Object3Ds | |
model.lookAt( new Vector3().fromArray( pos ) ); | |
} | |
} | |
} | |
} ); | |
} | |
} | |
bindSkeleton( skeletons, geometryMap, modelMap ) { | |
const bindMatrices = this.parsePoseNodes(); | |
for ( const ID in skeletons ) { | |
const skeleton = skeletons[ ID ]; | |
const parents = connections.get( parseInt( skeleton.ID ) ).parents; | |
parents.forEach( function ( parent ) { | |
if ( geometryMap.has( parent.ID ) ) { | |
const geoID = parent.ID; | |
const geoRelationships = connections.get( geoID ); | |
geoRelationships.parents.forEach( function ( geoConnParent ) { | |
if ( modelMap.has( geoConnParent.ID ) ) { | |
const model = modelMap.get( geoConnParent.ID ); | |
model.bind( new Skeleton( skeleton.bones ), bindMatrices[ geoConnParent.ID ] ); | |
} | |
} ); | |
} | |
} ); | |
} | |
} | |
parsePoseNodes() { | |
const bindMatrices = {}; | |
if ( 'Pose' in fbxTree.Objects ) { | |
const BindPoseNode = fbxTree.Objects.Pose; | |
for ( const nodeID in BindPoseNode ) { | |
if ( BindPoseNode[ nodeID ].attrType === 'BindPose' && BindPoseNode[ nodeID ].NbPoseNodes > 0 ) { | |
const poseNodes = BindPoseNode[ nodeID ].PoseNode; | |
if ( Array.isArray( poseNodes ) ) { | |
poseNodes.forEach( function ( poseNode ) { | |
bindMatrices[ poseNode.Node ] = new Matrix4().fromArray( poseNode.Matrix.a ); | |
} ); | |
} else { | |
bindMatrices[ poseNodes.Node ] = new Matrix4().fromArray( poseNodes.Matrix.a ); | |
} | |
} | |
} | |
} | |
return bindMatrices; | |
} | |
addGlobalSceneSettings() { | |
if ( 'GlobalSettings' in fbxTree ) { | |
if ( 'AmbientColor' in fbxTree.GlobalSettings ) { | |
// Parse ambient color - if it's not set to black (default), create an ambient light | |
const ambientColor = fbxTree.GlobalSettings.AmbientColor.value; | |
const r = ambientColor[ 0 ]; | |
const g = ambientColor[ 1 ]; | |
const b = ambientColor[ 2 ]; | |
if ( r !== 0 || g !== 0 || b !== 0 ) { | |
const color = new Color().setRGB( r, g, b, SRGBColorSpace ); | |
sceneGraph.add( new AmbientLight( color, 1 ) ); | |
} | |
} | |
if ( 'UnitScaleFactor' in fbxTree.GlobalSettings ) { | |
sceneGraph.userData.unitScaleFactor = fbxTree.GlobalSettings.UnitScaleFactor.value; | |
} | |
} | |
} | |
} | |
// parse Geometry data from FBXTree and return map of BufferGeometries | |
class GeometryParser { | |
constructor() { | |
this.negativeMaterialIndices = false; | |
} | |
// Parse nodes in FBXTree.Objects.Geometry | |
parse( deformers ) { | |
const geometryMap = new Map(); | |
if ( 'Geometry' in fbxTree.Objects ) { | |
const geoNodes = fbxTree.Objects.Geometry; | |
for ( const nodeID in geoNodes ) { | |
const relationships = connections.get( parseInt( nodeID ) ); | |
const geo = this.parseGeometry( relationships, geoNodes[ nodeID ], deformers ); | |
geometryMap.set( parseInt( nodeID ), geo ); | |
} | |
} | |
// report warnings | |
if ( this.negativeMaterialIndices === true ) { | |
console.warn( 'THREE.FBXLoader: The FBX file contains invalid (negative) material indices. The asset might not render as expected.' ); | |
} | |
return geometryMap; | |
} | |
// Parse single node in FBXTree.Objects.Geometry | |
parseGeometry( relationships, geoNode, deformers ) { | |
switch ( geoNode.attrType ) { | |
case 'Mesh': | |
return this.parseMeshGeometry( relationships, geoNode, deformers ); | |
break; | |
case 'NurbsCurve': | |
return this.parseNurbsGeometry( geoNode ); | |
break; | |
} | |
} | |
// Parse single node mesh geometry in FBXTree.Objects.Geometry | |
parseMeshGeometry( relationships, geoNode, deformers ) { | |
const skeletons = deformers.skeletons; | |
const morphTargets = []; | |
const modelNodes = relationships.parents.map( function ( parent ) { | |
return fbxTree.Objects.Model[ parent.ID ]; | |
} ); | |
// don't create geometry if it is not associated with any models | |
if ( modelNodes.length === 0 ) return; | |
const skeleton = relationships.children.reduce( function ( skeleton, child ) { | |
if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ]; | |
return skeleton; | |
}, null ); | |
relationships.children.forEach( function ( child ) { | |
if ( deformers.morphTargets[ child.ID ] !== undefined ) { | |
morphTargets.push( deformers.morphTargets[ child.ID ] ); | |
} | |
} ); | |
// Assume one model and get the preRotation from that | |
// if there is more than one model associated with the geometry this may cause problems | |
const modelNode = modelNodes[ 0 ]; | |
const transformData = {}; | |
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value ); | |
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value ); | |
if ( 'GeometricTranslation' in modelNode ) transformData.translation = modelNode.GeometricTranslation.value; | |
if ( 'GeometricRotation' in modelNode ) transformData.rotation = modelNode.GeometricRotation.value; | |
if ( 'GeometricScaling' in modelNode ) transformData.scale = modelNode.GeometricScaling.value; | |
const transform = generateTransform( transformData ); | |
return this.genGeometry( geoNode, skeleton, morphTargets, transform ); | |
} | |
// Generate a BufferGeometry from a node in FBXTree.Objects.Geometry | |
genGeometry( geoNode, skeleton, morphTargets, preTransform ) { | |
const geo = new BufferGeometry(); | |
if ( geoNode.attrName ) geo.name = geoNode.attrName; | |
const geoInfo = this.parseGeoNode( geoNode, skeleton ); | |
const buffers = this.genBuffers( geoInfo ); | |
const positionAttribute = new Float32BufferAttribute( buffers.vertex, 3 ); | |
positionAttribute.applyMatrix4( preTransform ); | |
geo.setAttribute( 'position', positionAttribute ); | |
if ( buffers.colors.length > 0 ) { | |
geo.setAttribute( 'color', new Float32BufferAttribute( buffers.colors, 3 ) ); | |
} | |
if ( skeleton ) { | |
geo.setAttribute( 'skinIndex', new Uint16BufferAttribute( buffers.weightsIndices, 4 ) ); | |
geo.setAttribute( 'skinWeight', new Float32BufferAttribute( buffers.vertexWeights, 4 ) ); | |
// used later to bind the skeleton to the model | |
geo.FBX_Deformer = skeleton; | |
} | |
if ( buffers.normal.length > 0 ) { | |
const normalMatrix = new Matrix3().getNormalMatrix( preTransform ); | |
const normalAttribute = new Float32BufferAttribute( buffers.normal, 3 ); | |
normalAttribute.applyNormalMatrix( normalMatrix ); | |
geo.setAttribute( 'normal', normalAttribute ); | |
} | |
buffers.uvs.forEach( function ( uvBuffer, i ) { | |
const name = i === 0 ? 'uv' : `uv${ i }`; | |
geo.setAttribute( name, new Float32BufferAttribute( buffers.uvs[ i ], 2 ) ); | |
} ); | |
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { | |
// Convert the material indices of each vertex into rendering groups on the geometry. | |
let prevMaterialIndex = buffers.materialIndex[ 0 ]; | |
let startIndex = 0; | |
buffers.materialIndex.forEach( function ( currentIndex, i ) { | |
if ( currentIndex !== prevMaterialIndex ) { | |
geo.addGroup( startIndex, i - startIndex, prevMaterialIndex ); | |
prevMaterialIndex = currentIndex; | |
startIndex = i; | |
} | |
} ); | |
// the loop above doesn't add the last group, do that here. | |
if ( geo.groups.length > 0 ) { | |
const lastGroup = geo.groups[ geo.groups.length - 1 ]; | |
const lastIndex = lastGroup.start + lastGroup.count; | |
if ( lastIndex !== buffers.materialIndex.length ) { | |
geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex ); | |
} | |
} | |
// case where there are multiple materials but the whole geometry is only | |
// using one of them | |
if ( geo.groups.length === 0 ) { | |
geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] ); | |
} | |
} | |
this.addMorphTargets( geo, geoNode, morphTargets, preTransform ); | |
return geo; | |
} | |
parseGeoNode( geoNode, skeleton ) { | |
const geoInfo = {}; | |
geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : []; | |
geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : []; | |
if ( geoNode.LayerElementColor ) { | |
geoInfo.color = this.parseVertexColors( geoNode.LayerElementColor[ 0 ] ); | |
} | |
if ( geoNode.LayerElementMaterial ) { | |
geoInfo.material = this.parseMaterialIndices( geoNode.LayerElementMaterial[ 0 ] ); | |
} | |
if ( geoNode.LayerElementNormal ) { | |
geoInfo.normal = this.parseNormals( geoNode.LayerElementNormal[ 0 ] ); | |
} | |
if ( geoNode.LayerElementUV ) { | |
geoInfo.uv = []; | |
let i = 0; | |
while ( geoNode.LayerElementUV[ i ] ) { | |
if ( geoNode.LayerElementUV[ i ].UV ) { | |
geoInfo.uv.push( this.parseUVs( geoNode.LayerElementUV[ i ] ) ); | |
} | |
i ++; | |
} | |
} | |
geoInfo.weightTable = {}; | |
if ( skeleton !== null ) { | |
geoInfo.skeleton = skeleton; | |
skeleton.rawBones.forEach( function ( rawBone, i ) { | |
// loop over the bone's vertex indices and weights | |
rawBone.indices.forEach( function ( index, j ) { | |
if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = []; | |
geoInfo.weightTable[ index ].push( { | |
id: i, | |
weight: rawBone.weights[ j ], | |
} ); | |
} ); | |
} ); | |
} | |
return geoInfo; | |
} | |
genBuffers( geoInfo ) { | |
const buffers = { | |
vertex: [], | |
normal: [], | |
colors: [], | |
uvs: [], | |
materialIndex: [], | |
vertexWeights: [], | |
weightsIndices: [], | |
}; | |
let polygonIndex = 0; | |
let faceLength = 0; | |
let displayedWeightsWarning = false; | |
// these will hold data for a single face | |
let facePositionIndexes = []; | |
let faceNormals = []; | |
let faceColors = []; | |
let faceUVs = []; | |
let faceWeights = []; | |
let faceWeightIndices = []; | |
const scope = this; | |
geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) { | |
let materialIndex; | |
let endOfFace = false; | |
// Face index and vertex index arrays are combined in a single array | |
// A cube with quad faces looks like this: | |
// PolygonVertexIndex: *24 { | |
// a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 | |
// } | |
// Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 | |
// to find index of last vertex bit shift the index: ^ - 1 | |
if ( vertexIndex < 0 ) { | |
vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1 | |
endOfFace = true; | |
} | |
let weightIndices = []; | |
let weights = []; | |
facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 ); | |
if ( geoInfo.color ) { | |
const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color ); | |
faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] ); | |
} | |
if ( geoInfo.skeleton ) { | |
if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) { | |
geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) { | |
weights.push( wt.weight ); | |
weightIndices.push( wt.id ); | |
} ); | |
} | |
if ( weights.length > 4 ) { | |
if ( ! displayedWeightsWarning ) { | |
console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' ); | |
displayedWeightsWarning = true; | |
} | |
const wIndex = [ 0, 0, 0, 0 ]; | |
const Weight = [ 0, 0, 0, 0 ]; | |
weights.forEach( function ( weight, weightIndex ) { | |
let currentWeight = weight; | |
let currentIndex = weightIndices[ weightIndex ]; | |
Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) { | |
if ( currentWeight > comparedWeight ) { | |
comparedWeightArray[ comparedWeightIndex ] = currentWeight; | |
currentWeight = comparedWeight; | |
const tmp = wIndex[ comparedWeightIndex ]; | |
wIndex[ comparedWeightIndex ] = currentIndex; | |
currentIndex = tmp; | |
} | |
} ); | |
} ); | |
weightIndices = wIndex; | |
weights = Weight; | |
} | |
// if the weight array is shorter than 4 pad with 0s | |
while ( weights.length < 4 ) { | |
weights.push( 0 ); | |
weightIndices.push( 0 ); | |
} | |
for ( let i = 0; i < 4; ++ i ) { | |
faceWeights.push( weights[ i ] ); | |
faceWeightIndices.push( weightIndices[ i ] ); | |
} | |
} | |
if ( geoInfo.normal ) { | |
const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal ); | |
faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] ); | |
} | |
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { | |
materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ]; | |
if ( materialIndex < 0 ) { | |
scope.negativeMaterialIndices = true; | |
materialIndex = 0; // fallback | |
} | |
} | |
if ( geoInfo.uv ) { | |
geoInfo.uv.forEach( function ( uv, i ) { | |
const data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv ); | |
if ( faceUVs[ i ] === undefined ) { | |
faceUVs[ i ] = []; | |
} | |
faceUVs[ i ].push( data[ 0 ] ); | |
faceUVs[ i ].push( data[ 1 ] ); | |
} ); | |
} | |
faceLength ++; | |
if ( endOfFace ) { | |
scope.genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ); | |
polygonIndex ++; | |
faceLength = 0; | |
// reset arrays for the next face | |
facePositionIndexes = []; | |
faceNormals = []; | |
faceColors = []; | |
faceUVs = []; | |
faceWeights = []; | |
faceWeightIndices = []; | |
} | |
} ); | |
return buffers; | |
} | |
// See https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal | |
getNormalNewell( vertices ) { | |
const normal = new Vector3( 0.0, 0.0, 0.0 ); | |
for ( let i = 0; i < vertices.length; i ++ ) { | |
const current = vertices[ i ]; | |
const next = vertices[ ( i + 1 ) % vertices.length ]; | |
normal.x += ( current.y - next.y ) * ( current.z + next.z ); | |
normal.y += ( current.z - next.z ) * ( current.x + next.x ); | |
normal.z += ( current.x - next.x ) * ( current.y + next.y ); | |
} | |
normal.normalize(); | |
return normal; | |
} | |
getNormalTangentAndBitangent( vertices ) { | |
const normalVector = this.getNormalNewell( vertices ); | |
// Avoid up being equal or almost equal to normalVector | |
const up = Math.abs( normalVector.z ) > 0.5 ? new Vector3( 0.0, 1.0, 0.0 ) : new Vector3( 0.0, 0.0, 1.0 ); | |
const tangent = up.cross( normalVector ).normalize(); | |
const bitangent = normalVector.clone().cross( tangent ).normalize(); | |
return { | |
normal: normalVector, | |
tangent: tangent, | |
bitangent: bitangent | |
}; | |
} | |
flattenVertex( vertex, normalTangent, normalBitangent ) { | |
return new Vector2( | |
vertex.dot( normalTangent ), | |
vertex.dot( normalBitangent ) | |
); | |
} | |
// Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris | |
genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) { | |
let triangles; | |
if ( faceLength > 3 ) { | |
// Triangulate n-gon using earcut | |
const vertices = []; | |
// in morphing scenario vertexPositions represent morphPositions | |
// while baseVertexPositions represent the original geometry's positions | |
const positions = geoInfo.baseVertexPositions || geoInfo.vertexPositions; | |
for ( let i = 0; i < facePositionIndexes.length; i += 3 ) { | |
vertices.push( | |
new Vector3( | |
positions[ facePositionIndexes[ i ] ], | |
positions[ facePositionIndexes[ i + 1 ] ], | |
positions[ facePositionIndexes[ i + 2 ] ] | |
) | |
); | |
} | |
const { tangent, bitangent } = this.getNormalTangentAndBitangent( vertices ); | |
const triangulationInput = []; | |
for ( const vertex of vertices ) { | |
triangulationInput.push( this.flattenVertex( vertex, tangent, bitangent ) ); | |
} | |
// When vertices is an array of [0,0,0] elements (which is the case for vertices not participating in morph) | |
// the triangulationInput will be an array of [0,0] elements | |
// resulting in an array of 0 triangles being returned from ShapeUtils.triangulateShape | |
// leading to not pushing into buffers.vertex the redundant vertices (the vertices that are not morphed). | |
// That's why, in order to support morphing scenario, "positions" is looking first for baseVertexPositions, | |
// so that we don't end up with an array of 0 triangles for the faces not participating in morph. | |
triangles = ShapeUtils.triangulateShape( triangulationInput, [] ); | |
} else { | |
// Regular triangle, skip earcut triangulation step | |
triangles = [[ 0, 1, 2 ]]; | |
} | |
for ( const [ i0, i1, i2 ] of triangles ) { | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 1 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i0 * 3 + 2 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 1 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i1 * 3 + 2 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 1 ] ] ); | |
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i2 * 3 + 2 ] ] ); | |
if ( geoInfo.skeleton ) { | |
buffers.vertexWeights.push( faceWeights[ i0 * 4 ] ); | |
buffers.vertexWeights.push( faceWeights[ i0 * 4 + 1 ] ); | |
buffers.vertexWeights.push( faceWeights[ i0 * 4 + 2 ] ); | |
buffers.vertexWeights.push( faceWeights[ i0 * 4 + 3 ] ); | |
buffers.vertexWeights.push( faceWeights[ i1 * 4 ] ); | |
buffers.vertexWeights.push( faceWeights[ i1 * 4 + 1 ] ); | |
buffers.vertexWeights.push( faceWeights[ i1 * 4 + 2 ] ); | |
buffers.vertexWeights.push( faceWeights[ i1 * 4 + 3 ] ); | |
buffers.vertexWeights.push( faceWeights[ i2 * 4 ] ); | |
buffers.vertexWeights.push( faceWeights[ i2 * 4 + 1 ] ); | |
buffers.vertexWeights.push( faceWeights[ i2 * 4 + 2 ] ); | |
buffers.vertexWeights.push( faceWeights[ i2 * 4 + 3 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 1 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 2 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i0 * 4 + 3 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 1 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 2 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i1 * 4 + 3 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 1 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 2 ] ); | |
buffers.weightsIndices.push( faceWeightIndices[ i2 * 4 + 3 ] ); | |
} | |
if ( geoInfo.color ) { | |
buffers.colors.push( faceColors[ i0 * 3 ] ); | |
buffers.colors.push( faceColors[ i0 * 3 + 1 ] ); | |
buffers.colors.push( faceColors[ i0 * 3 + 2 ] ); | |
buffers.colors.push( faceColors[ i1 * 3 ] ); | |
buffers.colors.push( faceColors[ i1 * 3 + 1 ] ); | |
buffers.colors.push( faceColors[ i1 * 3 + 2 ] ); | |
buffers.colors.push( faceColors[ i2 * 3 ] ); | |
buffers.colors.push( faceColors[ i2 * 3 + 1 ] ); | |
buffers.colors.push( faceColors[ i2 * 3 + 2 ] ); | |
} | |
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) { | |
buffers.materialIndex.push( materialIndex ); | |
buffers.materialIndex.push( materialIndex ); | |
buffers.materialIndex.push( materialIndex ); | |
} | |
if ( geoInfo.normal ) { | |
buffers.normal.push( faceNormals[ i0 * 3 ] ); | |
buffers.normal.push( faceNormals[ i0 * 3 + 1 ] ); | |
buffers.normal.push( faceNormals[ i0 * 3 + 2 ] ); | |
buffers.normal.push( faceNormals[ i1 * 3 ] ); | |
buffers.normal.push( faceNormals[ i1 * 3 + 1 ] ); | |
buffers.normal.push( faceNormals[ i1 * 3 + 2 ] ); | |
buffers.normal.push( faceNormals[ i2 * 3 ] ); | |
buffers.normal.push( faceNormals[ i2 * 3 + 1 ] ); | |
buffers.normal.push( faceNormals[ i2 * 3 + 2 ] ); | |
} | |
if ( geoInfo.uv ) { | |
geoInfo.uv.forEach( function ( uv, j ) { | |
if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = []; | |
buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 ] ); | |
buffers.uvs[ j ].push( faceUVs[ j ][ i0 * 2 + 1 ] ); | |
buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 ] ); | |
buffers.uvs[ j ].push( faceUVs[ j ][ i1 * 2 + 1 ] ); | |
buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 ] ); | |
buffers.uvs[ j ].push( faceUVs[ j ][ i2 * 2 + 1 ] ); | |
} ); | |
} | |
} | |
} | |
addMorphTargets( parentGeo, parentGeoNode, morphTargets, preTransform ) { | |
if ( morphTargets.length === 0 ) return; | |
parentGeo.morphTargetsRelative = true; | |
parentGeo.morphAttributes.position = []; | |
// parentGeo.morphAttributes.normal = []; // not implemented | |
const scope = this; | |
morphTargets.forEach( function ( morphTarget ) { | |
morphTarget.rawTargets.forEach( function ( rawTarget ) { | |
const morphGeoNode = fbxTree.Objects.Geometry[ rawTarget.geoID ]; | |
if ( morphGeoNode !== undefined ) { | |
scope.genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name ); | |
} | |
} ); | |
} ); | |
} | |
// a morph geometry node is similar to a standard node, and the node is also contained | |
// in FBXTree.Objects.Geometry, however it can only have attributes for position, normal | |
// and a special attribute Index defining which vertices of the original geometry are affected | |
// Normal and position attributes only have data for the vertices that are affected by the morph | |
genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, name ) { | |
const basePositions = parentGeoNode.Vertices !== undefined ? parentGeoNode.Vertices.a : []; | |
const baseIndices = parentGeoNode.PolygonVertexIndex !== undefined ? parentGeoNode.PolygonVertexIndex.a : []; | |
const morphPositionsSparse = morphGeoNode.Vertices !== undefined ? morphGeoNode.Vertices.a : []; | |
const morphIndices = morphGeoNode.Indexes !== undefined ? morphGeoNode.Indexes.a : []; | |
const length = parentGeo.attributes.position.count * 3; | |
const morphPositions = new Float32Array( length ); | |
for ( let i = 0; i < morphIndices.length; i ++ ) { | |
const morphIndex = morphIndices[ i ] * 3; | |
morphPositions[ morphIndex ] = morphPositionsSparse[ i * 3 ]; | |
morphPositions[ morphIndex + 1 ] = morphPositionsSparse[ i * 3 + 1 ]; | |
morphPositions[ morphIndex + 2 ] = morphPositionsSparse[ i * 3 + 2 ]; | |
} | |
// TODO: add morph normal support | |
const morphGeoInfo = { | |
vertexIndices: baseIndices, | |
vertexPositions: morphPositions, | |
baseVertexPositions: basePositions | |
}; | |
const morphBuffers = this.genBuffers( morphGeoInfo ); | |
const positionAttribute = new Float32BufferAttribute( morphBuffers.vertex, 3 ); | |
positionAttribute.name = name || morphGeoNode.attrName; | |
positionAttribute.applyMatrix4( preTransform ); | |
parentGeo.morphAttributes.position.push( positionAttribute ); | |
} | |
// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists | |
parseNormals( NormalNode ) { | |
const mappingType = NormalNode.MappingInformationType; | |
const referenceType = NormalNode.ReferenceInformationType; | |
const buffer = NormalNode.Normals.a; | |
let indexBuffer = []; | |
if ( referenceType === 'IndexToDirect' ) { | |
if ( 'NormalIndex' in NormalNode ) { | |
indexBuffer = NormalNode.NormalIndex.a; | |
} else if ( 'NormalsIndex' in NormalNode ) { | |
indexBuffer = NormalNode.NormalsIndex.a; | |
} | |
} | |
return { | |
dataSize: 3, | |
buffer: buffer, | |
indices: indexBuffer, | |
mappingType: mappingType, | |
referenceType: referenceType | |
}; | |
} | |
// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists | |
parseUVs( UVNode ) { | |
const mappingType = UVNode.MappingInformationType; | |
const referenceType = UVNode.ReferenceInformationType; | |
const buffer = UVNode.UV.a; | |
let indexBuffer = []; | |
if ( referenceType === 'IndexToDirect' ) { | |
indexBuffer = UVNode.UVIndex.a; | |
} | |
return { | |
dataSize: 2, | |
buffer: buffer, | |
indices: indexBuffer, | |
mappingType: mappingType, | |
referenceType: referenceType | |
}; | |
} | |
// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists | |
parseVertexColors( ColorNode ) { | |
const mappingType = ColorNode.MappingInformationType; | |
const referenceType = ColorNode.ReferenceInformationType; | |
const buffer = ColorNode.Colors.a; | |
let indexBuffer = []; | |
if ( referenceType === 'IndexToDirect' ) { | |
indexBuffer = ColorNode.ColorIndex.a; | |
} | |
for ( let i = 0, c = new Color(); i < buffer.length; i += 4 ) { | |
c.fromArray( buffer, i ); | |
ColorManagement.toWorkingColorSpace( c, SRGBColorSpace ); | |
c.toArray( buffer, i ); | |
} | |
return { | |
dataSize: 4, | |
buffer: buffer, | |
indices: indexBuffer, | |
mappingType: mappingType, | |
referenceType: referenceType | |
}; | |
} | |
// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists | |
parseMaterialIndices( MaterialNode ) { | |
const mappingType = MaterialNode.MappingInformationType; | |
const referenceType = MaterialNode.ReferenceInformationType; | |
if ( mappingType === 'NoMappingInformation' ) { | |
return { | |
dataSize: 1, | |
buffer: [ 0 ], | |
indices: [ 0 ], | |
mappingType: 'AllSame', | |
referenceType: referenceType | |
}; | |
} | |
const materialIndexBuffer = MaterialNode.Materials.a; | |
// Since materials are stored as indices, there's a bit of a mismatch between FBX and what | |
// we expect.So we create an intermediate buffer that points to the index in the buffer, | |
// for conforming with the other functions we've written for other data. | |
const materialIndices = []; | |
for ( let i = 0; i < materialIndexBuffer.length; ++ i ) { | |
materialIndices.push( i ); | |
} | |
return { | |
dataSize: 1, | |
buffer: materialIndexBuffer, | |
indices: materialIndices, | |
mappingType: mappingType, | |
referenceType: referenceType | |
}; | |
} | |
// Generate a NurbGeometry from a node in FBXTree.Objects.Geometry | |
parseNurbsGeometry( geoNode ) { | |
const order = parseInt( geoNode.Order ); | |
if ( isNaN( order ) ) { | |
console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geoNode.Order, geoNode.id ); | |
return new BufferGeometry(); | |
} | |
const degree = order - 1; | |
const knots = geoNode.KnotVector.a; | |
const controlPoints = []; | |
const pointsValues = geoNode.Points.a; | |
for ( let i = 0, l = pointsValues.length; i < l; i += 4 ) { | |
controlPoints.push( new Vector4().fromArray( pointsValues, i ) ); | |
} | |
let startKnot, endKnot; | |
if ( geoNode.Form === 'Closed' ) { | |
controlPoints.push( controlPoints[ 0 ] ); | |
} else if ( geoNode.Form === 'Periodic' ) { | |
startKnot = degree; | |
endKnot = knots.length - 1 - startKnot; | |
for ( let i = 0; i < degree; ++ i ) { | |
controlPoints.push( controlPoints[ i ] ); | |
} | |
} | |
const curve = new NURBSCurve( degree, knots, controlPoints, startKnot, endKnot ); | |
const points = curve.getPoints( controlPoints.length * 12 ); | |
return new BufferGeometry().setFromPoints( points ); | |
} | |
} | |
// parse animation data from FBXTree | |
class AnimationParser { | |
// take raw animation clips and turn them into three.js animation clips | |
parse() { | |
const animationClips = []; | |
const rawClips = this.parseClips(); | |
if ( rawClips !== undefined ) { | |
for ( const key in rawClips ) { | |
const rawClip = rawClips[ key ]; | |
const clip = this.addClip( rawClip ); | |
animationClips.push( clip ); | |
} | |
} | |
return animationClips; | |
} | |
parseClips() { | |
// since the actual transformation data is stored in FBXTree.Objects.AnimationCurve, | |
// if this is undefined we can safely assume there are no animations | |
if ( fbxTree.Objects.AnimationCurve === undefined ) return undefined; | |
const curveNodesMap = this.parseAnimationCurveNodes(); | |
this.parseAnimationCurves( curveNodesMap ); | |
const layersMap = this.parseAnimationLayers( curveNodesMap ); | |
const rawClips = this.parseAnimStacks( layersMap ); | |
return rawClips; | |
} | |
// parse nodes in FBXTree.Objects.AnimationCurveNode | |
// each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation ) | |
// and is referenced by an AnimationLayer | |
parseAnimationCurveNodes() { | |
const rawCurveNodes = fbxTree.Objects.AnimationCurveNode; | |
const curveNodesMap = new Map(); | |
for ( const nodeID in rawCurveNodes ) { | |
const rawCurveNode = rawCurveNodes[ nodeID ]; | |
if ( rawCurveNode.attrName.match( /S|R|T|DeformPercent/ ) !== null ) { | |
const curveNode = { | |
id: rawCurveNode.id, | |
attr: rawCurveNode.attrName, | |
curves: {}, | |
}; | |
curveNodesMap.set( curveNode.id, curveNode ); | |
} | |
} | |
return curveNodesMap; | |
} | |
// parse nodes in FBXTree.Objects.AnimationCurve and connect them up to | |
// previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated | |
// axis ( e.g. times and values of x rotation) | |
parseAnimationCurves( curveNodesMap ) { | |
const rawCurves = fbxTree.Objects.AnimationCurve; | |
// TODO: Many values are identical up to roundoff error, but won't be optimised | |
// e.g. position times: [0, 0.4, 0. 8] | |
// position values: [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.235384487103147e-7, 93.67520904541016, -0.9982695579528809] | |
// clearly, this should be optimised to | |
// times: [0], positions [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809] | |
// this shows up in nearly every FBX file, and generally time array is length > 100 | |
for ( const nodeID in rawCurves ) { | |
const animationCurve = { | |
id: rawCurves[ nodeID ].id, | |
times: rawCurves[ nodeID ].KeyTime.a.map( convertFBXTimeToSeconds ), | |
values: rawCurves[ nodeID ].KeyValueFloat.a, | |
}; | |
const relationships = connections.get( animationCurve.id ); | |
if ( relationships !== undefined ) { | |
const animationCurveID = relationships.parents[ 0 ].ID; | |
const animationCurveRelationship = relationships.parents[ 0 ].relationship; | |
if ( animationCurveRelationship.match( /X/ ) ) { | |
curveNodesMap.get( animationCurveID ).curves[ 'x' ] = animationCurve; | |
} else if ( animationCurveRelationship.match( /Y/ ) ) { | |
curveNodesMap.get( animationCurveID ).curves[ 'y' ] = animationCurve; | |
} else if ( animationCurveRelationship.match( /Z/ ) ) { | |
curveNodesMap.get( animationCurveID ).curves[ 'z' ] = animationCurve; | |
} else if ( animationCurveRelationship.match( /DeformPercent/ ) && curveNodesMap.has( animationCurveID ) ) { | |
curveNodesMap.get( animationCurveID ).curves[ 'morph' ] = animationCurve; | |
} | |
} | |
} | |
} | |
// parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references | |
// to various AnimationCurveNodes and is referenced by an AnimationStack node | |
// note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack | |
parseAnimationLayers( curveNodesMap ) { | |
const rawLayers = fbxTree.Objects.AnimationLayer; | |
const layersMap = new Map(); | |
for ( const nodeID in rawLayers ) { | |
const layerCurveNodes = []; | |
const connection = connections.get( parseInt( nodeID ) ); | |
if ( connection !== undefined ) { | |
// all the animationCurveNodes used in the layer | |
const children = connection.children; | |
children.forEach( function ( child, i ) { | |
if ( curveNodesMap.has( child.ID ) ) { | |
const curveNode = curveNodesMap.get( child.ID ); | |
// check that the curves are defined for at least one axis, otherwise ignore the curveNode | |
if ( curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined ) { | |
if ( layerCurveNodes[ i ] === undefined ) { | |
const modelID = connections.get( child.ID ).parents.filter( function ( parent ) { | |
return parent.relationship !== undefined; | |
} )[ 0 ].ID; | |
if ( modelID !== undefined ) { | |
const rawModel = fbxTree.Objects.Model[ modelID.toString() ]; | |
if ( rawModel === undefined ) { | |
console.warn( 'THREE.FBXLoader: Encountered a unused curve.', child ); | |
return; | |
} | |
const node = { | |
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '', | |
ID: rawModel.id, | |
initialPosition: [ 0, 0, 0 ], | |
initialRotation: [ 0, 0, 0 ], | |
initialScale: [ 1, 1, 1 ], | |
}; | |
sceneGraph.traverse( function ( child ) { | |
if ( child.ID === rawModel.id ) { | |
node.transform = child.matrix; | |
if ( child.userData.transformData ) node.eulerOrder = child.userData.transformData.eulerOrder; | |
} | |
} ); | |
if ( ! node.transform ) node.transform = new Matrix4(); | |
// if the animated model is pre rotated, we'll have to apply the pre rotations to every | |
// animation value as well | |
if ( 'PreRotation' in rawModel ) node.preRotation = rawModel.PreRotation.value; | |
if ( 'PostRotation' in rawModel ) node.postRotation = rawModel.PostRotation.value; | |
layerCurveNodes[ i ] = node; | |
} | |
} | |
if ( layerCurveNodes[ i ] ) layerCurveNodes[ i ][ curveNode.attr ] = curveNode; | |
} else if ( curveNode.curves.morph !== undefined ) { | |
if ( layerCurveNodes[ i ] === undefined ) { | |
const deformerID = connections.get( child.ID ).parents.filter( function ( parent ) { | |
return parent.relationship !== undefined; | |
} )[ 0 ].ID; | |
const morpherID = connections.get( deformerID ).parents[ 0 ].ID; | |
const geoID = connections.get( morpherID ).parents[ 0 ].ID; | |
// assuming geometry is not used in more than one model | |
const modelID = connections.get( geoID ).parents[ 0 ].ID; | |
const rawModel = fbxTree.Objects.Model[ modelID ]; | |
const node = { | |
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '', | |
morphName: fbxTree.Objects.Deformer[ deformerID ].attrName, | |
}; | |
layerCurveNodes[ i ] = node; | |
} | |
layerCurveNodes[ i ][ curveNode.attr ] = curveNode; | |
} | |
} | |
} ); | |
layersMap.set( parseInt( nodeID ), layerCurveNodes ); | |
} | |
} | |
return layersMap; | |
} | |
// parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation | |
// hierarchy. Each Stack node will be used to create a AnimationClip | |
parseAnimStacks( layersMap ) { | |
const rawStacks = fbxTree.Objects.AnimationStack; | |
// connect the stacks (clips) up to the layers | |
const rawClips = {}; | |
for ( const nodeID in rawStacks ) { | |
const children = connections.get( parseInt( nodeID ) ).children; | |
if ( children.length > 1 ) { | |
// it seems like stacks will always be associated with a single layer. But just in case there are files | |
// where there are multiple layers per stack, we'll display a warning | |
console.warn( 'THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.' ); | |
} | |
const layer = layersMap.get( children[ 0 ].ID ); | |
rawClips[ nodeID ] = { | |
name: rawStacks[ nodeID ].attrName, | |
layer: layer, | |
}; | |
} | |
return rawClips; | |
} | |
addClip( rawClip ) { | |
let tracks = []; | |
const scope = this; | |
rawClip.layer.forEach( function ( rawTracks ) { | |
tracks = tracks.concat( scope.generateTracks( rawTracks ) ); | |
} ); | |
return new AnimationClip( rawClip.name, - 1, tracks ); | |
} | |
generateTracks( rawTracks ) { | |
const tracks = []; | |
let initialPosition = new Vector3(); | |
let initialScale = new Vector3(); | |
if ( rawTracks.transform ) rawTracks.transform.decompose( initialPosition, new Quaternion(), initialScale ); | |
initialPosition = initialPosition.toArray(); | |
initialScale = initialScale.toArray(); | |
if ( rawTracks.T !== undefined && Object.keys( rawTracks.T.curves ).length > 0 ) { | |
const positionTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.T.curves, initialPosition, 'position' ); | |
if ( positionTrack !== undefined ) tracks.push( positionTrack ); | |
} | |
if ( rawTracks.R !== undefined && Object.keys( rawTracks.R.curves ).length > 0 ) { | |
const rotationTrack = this.generateRotationTrack( rawTracks.modelName, rawTracks.R.curves, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder ); | |
if ( rotationTrack !== undefined ) tracks.push( rotationTrack ); | |
} | |
if ( rawTracks.S !== undefined && Object.keys( rawTracks.S.curves ).length > 0 ) { | |
const scaleTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.S.curves, initialScale, 'scale' ); | |
if ( scaleTrack !== undefined ) tracks.push( scaleTrack ); | |
} | |
if ( rawTracks.DeformPercent !== undefined ) { | |
const morphTrack = this.generateMorphTrack( rawTracks ); | |
if ( morphTrack !== undefined ) tracks.push( morphTrack ); | |
} | |
return tracks; | |
} | |
generateVectorTrack( modelName, curves, initialValue, type ) { | |
const times = this.getTimesForAllAxes( curves ); | |
const values = this.getKeyframeTrackValues( times, curves, initialValue ); | |
return new VectorKeyframeTrack( modelName + '.' + type, times, values ); | |
} | |
generateRotationTrack( modelName, curves, preRotation, postRotation, eulerOrder ) { | |
let times; | |
let values; | |
if ( curves.x !== undefined && curves.y !== undefined && curves.z !== undefined ) { | |
const result = this.interpolateRotations( curves.x, curves.y, curves.z, eulerOrder ); | |
times = result[ 0 ]; | |
values = result[ 1 ]; | |
} | |
// For Maya models using "Joint Orient", Euler order only applies to rotation, not pre/post-rotations | |
const defaultEulerOrder = getEulerOrder( 0 ); | |
if ( preRotation !== undefined ) { | |
preRotation = preRotation.map( MathUtils.degToRad ); | |
preRotation.push( defaultEulerOrder ); | |
preRotation = new Euler().fromArray( preRotation ); | |
preRotation = new Quaternion().setFromEuler( preRotation ); | |
} | |
if ( postRotation !== undefined ) { | |
postRotation = postRotation.map( MathUtils.degToRad ); | |
postRotation.push( defaultEulerOrder ); | |
postRotation = new Euler().fromArray( postRotation ); | |
postRotation = new Quaternion().setFromEuler( postRotation ).invert(); | |
} | |
const quaternion = new Quaternion(); | |
const euler = new Euler(); | |
const quaternionValues = []; | |
if ( ! values || ! times ) return new QuaternionKeyframeTrack( modelName + '.quaternion', [ 0 ], [ 0 ] ); | |
for ( let i = 0; i < values.length; i += 3 ) { | |
euler.set( values[ i ], values[ i + 1 ], values[ i + 2 ], eulerOrder ); | |
quaternion.setFromEuler( euler ); | |
if ( preRotation !== undefined ) quaternion.premultiply( preRotation ); | |
if ( postRotation !== undefined ) quaternion.multiply( postRotation ); | |
// Check unroll | |
if ( i > 2 ) { | |
const prevQuat = new Quaternion().fromArray( | |
quaternionValues, | |
( ( i - 3 ) / 3 ) * 4 | |
); | |
if ( prevQuat.dot( quaternion ) < 0 ) { | |
quaternion.set( - quaternion.x, - quaternion.y, - quaternion.z, - quaternion.w ); | |
} | |
} | |
quaternion.toArray( quaternionValues, ( i / 3 ) * 4 ); | |
} | |
return new QuaternionKeyframeTrack( modelName + '.quaternion', times, quaternionValues ); | |
} | |
generateMorphTrack( rawTracks ) { | |
const curves = rawTracks.DeformPercent.curves.morph; | |
const values = curves.values.map( function ( val ) { | |
return val / 100; | |
} ); | |
const morphNum = sceneGraph.getObjectByName( rawTracks.modelName ).morphTargetDictionary[ rawTracks.morphName ]; | |
return new NumberKeyframeTrack( rawTracks.modelName + '.morphTargetInfluences[' + morphNum + ']', curves.times, values ); | |
} | |
// For all animated objects, times are defined separately for each axis | |
// Here we'll combine the times into one sorted array without duplicates | |
getTimesForAllAxes( curves ) { | |
let times = []; | |
// first join together the times for each axis, if defined | |
if ( curves.x !== undefined ) times = times.concat( curves.x.times ); | |
if ( curves.y !== undefined ) times = times.concat( curves.y.times ); | |
if ( curves.z !== undefined ) times = times.concat( curves.z.times ); | |
// then sort them | |
times = times.sort( function ( a, b ) { | |
return a - b; | |
} ); | |
// and remove duplicates | |
if ( times.length > 1 ) { | |
let targetIndex = 1; | |
let lastValue = times[ 0 ]; | |
for ( let i = 1; i < times.length; i ++ ) { | |
const currentValue = times[ i ]; | |
if ( currentValue !== lastValue ) { | |
times[ targetIndex ] = currentValue; | |
lastValue = currentValue; | |
targetIndex ++; | |
} | |
} | |
times = times.slice( 0, targetIndex ); | |
} | |
return times; | |
} | |
getKeyframeTrackValues( times, curves, initialValue ) { | |
const prevValue = initialValue; | |
const values = []; | |
let xIndex = - 1; | |
let yIndex = - 1; | |
let zIndex = - 1; | |
times.forEach( function ( time ) { | |
if ( curves.x ) xIndex = curves.x.times.indexOf( time ); | |
if ( curves.y ) yIndex = curves.y.times.indexOf( time ); | |
if ( curves.z ) zIndex = curves.z.times.indexOf( time ); | |
// if there is an x value defined for this frame, use that | |
if ( xIndex !== - 1 ) { | |
const xValue = curves.x.values[ xIndex ]; | |
values.push( xValue ); | |
prevValue[ 0 ] = xValue; | |
} else { | |
// otherwise use the x value from the previous frame | |
values.push( prevValue[ 0 ] ); | |
} | |
if ( yIndex !== - 1 ) { | |
const yValue = curves.y.values[ yIndex ]; | |
values.push( yValue ); | |
prevValue[ 1 ] = yValue; | |
} else { | |
values.push( prevValue[ 1 ] ); | |
} | |
if ( zIndex !== - 1 ) { | |
const zValue = curves.z.values[ zIndex ]; | |
values.push( zValue ); | |
prevValue[ 2 ] = zValue; | |
} else { | |
values.push( prevValue[ 2 ] ); | |
} | |
} ); | |
return values; | |
} | |
// Rotations are defined as Euler angles which can have values of any size | |
// These will be converted to quaternions which don't support values greater than | |
// PI, so we'll interpolate large rotations | |
interpolateRotations( curvex, curvey, curvez, eulerOrder ) { | |
const times = []; | |
const values = []; | |
// Add first frame | |
times.push( curvex.times[ 0 ] ); | |
values.push( MathUtils.degToRad( curvex.values[ 0 ] ) ); | |
values.push( MathUtils.degToRad( curvey.values[ 0 ] ) ); | |
values.push( MathUtils.degToRad( curvez.values[ 0 ] ) ); | |
for ( let i = 1; i < curvex.values.length; i ++ ) { | |
const initialValue = [ | |
curvex.values[ i - 1 ], | |
curvey.values[ i - 1 ], | |
curvez.values[ i - 1 ], | |
]; | |
if ( isNaN( initialValue[ 0 ] ) || isNaN( initialValue[ 1 ] ) || isNaN( initialValue[ 2 ] ) ) { | |
continue; | |
} | |
const initialValueRad = initialValue.map( MathUtils.degToRad ); | |
const currentValue = [ | |
curvex.values[ i ], | |
curvey.values[ i ], | |
curvez.values[ i ], | |
]; | |
if ( isNaN( currentValue[ 0 ] ) || isNaN( currentValue[ 1 ] ) || isNaN( currentValue[ 2 ] ) ) { | |
continue; | |
} | |
const currentValueRad = currentValue.map( MathUtils.degToRad ); | |
const valuesSpan = [ | |
currentValue[ 0 ] - initialValue[ 0 ], | |
currentValue[ 1 ] - initialValue[ 1 ], | |
currentValue[ 2 ] - initialValue[ 2 ], | |
]; | |
const absoluteSpan = [ | |
Math.abs( valuesSpan[ 0 ] ), | |
Math.abs( valuesSpan[ 1 ] ), | |
Math.abs( valuesSpan[ 2 ] ), | |
]; | |
if ( absoluteSpan[ 0 ] >= 180 || absoluteSpan[ 1 ] >= 180 || absoluteSpan[ 2 ] >= 180 ) { | |
const maxAbsSpan = Math.max( ...absoluteSpan ); | |
const numSubIntervals = maxAbsSpan / 180; | |
const E1 = new Euler( ...initialValueRad, eulerOrder ); | |
const E2 = new Euler( ...currentValueRad, eulerOrder ); | |
const Q1 = new Quaternion().setFromEuler( E1 ); | |
const Q2 = new Quaternion().setFromEuler( E2 ); | |
// Check unroll | |
if ( Q1.dot( Q2 ) ) { | |
Q2.set( - Q2.x, - Q2.y, - Q2.z, - Q2.w ); | |
} | |
// Interpolate | |
const initialTime = curvex.times[ i - 1 ]; | |
const timeSpan = curvex.times[ i ] - initialTime; | |
const Q = new Quaternion(); | |
const E = new Euler(); | |
for ( let t = 0; t < 1; t += 1 / numSubIntervals ) { | |
Q.copy( Q1.clone().slerp( Q2.clone(), t ) ); | |
times.push( initialTime + t * timeSpan ); | |
E.setFromQuaternion( Q, eulerOrder ); | |
values.push( E.x ); | |
values.push( E.y ); | |
values.push( E.z ); | |
} | |
} else { | |
times.push( curvex.times[ i ] ); | |
values.push( MathUtils.degToRad( curvex.values[ i ] ) ); | |
values.push( MathUtils.degToRad( curvey.values[ i ] ) ); | |
values.push( MathUtils.degToRad( curvez.values[ i ] ) ); | |
} | |
} | |
return [ times, values ]; | |
} | |
} | |
// parse an FBX file in ASCII format | |
class TextParser { | |
getPrevNode() { | |
return this.nodeStack[ this.currentIndent - 2 ]; | |
} | |
getCurrentNode() { | |
return this.nodeStack[ this.currentIndent - 1 ]; | |
} | |
getCurrentProp() { | |
return this.currentProp; | |
} | |
pushStack( node ) { | |
this.nodeStack.push( node ); | |
this.currentIndent += 1; | |
} | |
popStack() { | |
this.nodeStack.pop(); | |
this.currentIndent -= 1; | |
} | |
setCurrentProp( val, name ) { | |
this.currentProp = val; | |
this.currentPropName = name; | |
} | |
parse( text ) { | |
this.currentIndent = 0; | |
this.allNodes = new FBXTree(); | |
this.nodeStack = []; | |
this.currentProp = []; | |
this.currentPropName = ''; | |
const scope = this; | |
const split = text.split( /[\r\n]+/ ); | |
split.forEach( function ( line, i ) { | |
const matchComment = line.match( /^[\s\t]*;/ ); | |
const matchEmpty = line.match( /^[\s\t]*$/ ); | |
if ( matchComment || matchEmpty ) return; | |
const matchBeginning = line.match( '^\\t{' + scope.currentIndent + '}(\\w+):(.*){', '' ); | |
const matchProperty = line.match( '^\\t{' + ( scope.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' ); | |
const matchEnd = line.match( '^\\t{' + ( scope.currentIndent - 1 ) + '}}' ); | |
if ( matchBeginning ) { | |
scope.parseNodeBegin( line, matchBeginning ); | |
} else if ( matchProperty ) { | |
scope.parseNodeProperty( line, matchProperty, split[ ++ i ] ); | |
} else if ( matchEnd ) { | |
scope.popStack(); | |
} else if ( line.match( /^[^\s\t}]/ ) ) { | |
// large arrays are split over multiple lines terminated with a ',' character | |
// if this is encountered the line needs to be joined to the previous line | |
scope.parseNodePropertyContinued( line ); | |
} | |
} ); | |
return this.allNodes; | |
} | |
parseNodeBegin( line, property ) { | |
const nodeName = property[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' ); | |
const nodeAttrs = property[ 2 ].split( ',' ).map( function ( attr ) { | |
return attr.trim().replace( /^"/, '' ).replace( /"$/, '' ); | |
} ); | |
const node = { name: nodeName }; | |
const attrs = this.parseNodeAttr( nodeAttrs ); | |
const currentNode = this.getCurrentNode(); | |
// a top node | |
if ( this.currentIndent === 0 ) { | |
this.allNodes.add( nodeName, node ); | |
} else { // a subnode | |
// if the subnode already exists, append it | |
if ( nodeName in currentNode ) { | |
// special case Pose needs PoseNodes as an array | |
if ( nodeName === 'PoseNode' ) { | |
currentNode.PoseNode.push( node ); | |
} else if ( currentNode[ nodeName ].id !== undefined ) { | |
currentNode[ nodeName ] = {}; | |
currentNode[ nodeName ][ currentNode[ nodeName ].id ] = currentNode[ nodeName ]; | |
} | |
if ( attrs.id !== '' ) currentNode[ nodeName ][ attrs.id ] = node; | |
} else if ( typeof attrs.id === 'number' ) { | |
currentNode[ nodeName ] = {}; | |
currentNode[ nodeName ][ attrs.id ] = node; | |
} else if ( nodeName !== 'Properties70' ) { | |
if ( nodeName === 'PoseNode' ) currentNode[ nodeName ] = [ node ]; | |
else currentNode[ nodeName ] = node; | |
} | |
} | |
if ( typeof attrs.id === 'number' ) node.id = attrs.id; | |
if ( attrs.name !== '' ) node.attrName = attrs.name; | |
if ( attrs.type !== '' ) node.attrType = attrs.type; | |
this.pushStack( node ); | |
} | |
parseNodeAttr( attrs ) { | |
let id = attrs[ 0 ]; | |
if ( attrs[ 0 ] !== '' ) { | |
id = parseInt( attrs[ 0 ] ); | |
if ( isNaN( id ) ) { | |
id = attrs[ 0 ]; | |
} | |
} | |
let name = '', type = ''; | |
if ( attrs.length > 1 ) { | |
name = attrs[ 1 ].replace( /^(\w+)::/, '' ); | |
type = attrs[ 2 ]; | |
} | |
return { id: id, name: name, type: type }; | |
} | |
parseNodeProperty( line, property, contentLine ) { | |
let propName = property[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); | |
let propValue = property[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim(); | |
// for special case: base64 image data follows "Content: ," line | |
// Content: , | |
// "/9j/4RDaRXhpZgAATU0A..." | |
if ( propName === 'Content' && propValue === ',' ) { | |
propValue = contentLine.replace( /"/g, '' ).replace( /,$/, '' ).trim(); | |
} | |
const currentNode = this.getCurrentNode(); | |
const parentName = currentNode.name; | |
if ( parentName === 'Properties70' ) { | |
this.parseNodeSpecialProperty( line, propName, propValue ); | |
return; | |
} | |
// Connections | |
if ( propName === 'C' ) { | |
const connProps = propValue.split( ',' ).slice( 1 ); | |
const from = parseInt( connProps[ 0 ] ); | |
const to = parseInt( connProps[ 1 ] ); | |
let rest = propValue.split( ',' ).slice( 3 ); | |
rest = rest.map( function ( elem ) { | |
return elem.trim().replace( /^"/, '' ); | |
} ); | |
propName = 'connections'; | |
propValue = [ from, to ]; | |
append( propValue, rest ); | |
if ( currentNode[ propName ] === undefined ) { | |
currentNode[ propName ] = []; | |
} | |
} | |
// Node | |
if ( propName === 'Node' ) currentNode.id = propValue; | |
// connections | |
if ( propName in currentNode && Array.isArray( currentNode[ propName ] ) ) { | |
currentNode[ propName ].push( propValue ); | |
} else { | |
if ( propName !== 'a' ) currentNode[ propName ] = propValue; | |
else currentNode.a = propValue; | |
} | |
this.setCurrentProp( currentNode, propName ); | |
// convert string to array, unless it ends in ',' in which case more will be added to it | |
if ( propName === 'a' && propValue.slice( - 1 ) !== ',' ) { | |
currentNode.a = parseNumberArray( propValue ); | |
} | |
} | |
parseNodePropertyContinued( line ) { | |
const currentNode = this.getCurrentNode(); | |
currentNode.a += line; | |
// if the line doesn't end in ',' we have reached the end of the property value | |
// so convert the string to an array | |
if ( line.slice( - 1 ) !== ',' ) { | |
currentNode.a = parseNumberArray( currentNode.a ); | |
} | |
} | |
// parse "Property70" | |
parseNodeSpecialProperty( line, propName, propValue ) { | |
// split this | |
// P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1 | |
// into array like below | |
// ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ] | |
const props = propValue.split( '",' ).map( function ( prop ) { | |
return prop.trim().replace( /^\"/, '' ).replace( /\s/, '_' ); | |
} ); | |
const innerPropName = props[ 0 ]; | |
const innerPropType1 = props[ 1 ]; | |
const innerPropType2 = props[ 2 ]; | |
const innerPropFlag = props[ 3 ]; | |
let innerPropValue = props[ 4 ]; | |
// cast values where needed, otherwise leave as strings | |
switch ( innerPropType1 ) { | |
case 'int': | |
case 'enum': | |
case 'bool': | |
case 'ULongLong': | |
case 'double': | |
case 'Number': | |
case 'FieldOfView': | |
innerPropValue = parseFloat( innerPropValue ); | |
break; | |
case 'Color': | |
case 'ColorRGB': | |
case 'Vector3D': | |
case 'Lcl_Translation': | |
case 'Lcl_Rotation': | |
case 'Lcl_Scaling': | |
innerPropValue = parseNumberArray( innerPropValue ); | |
break; | |
} | |
// CAUTION: these props must append to parent's parent | |
this.getPrevNode()[ innerPropName ] = { | |
'type': innerPropType1, | |
'type2': innerPropType2, | |
'flag': innerPropFlag, | |
'value': innerPropValue | |
}; | |
this.setCurrentProp( this.getPrevNode(), innerPropName ); | |
} | |
} | |
// Parse an FBX file in Binary format | |
class BinaryParser { | |
parse( buffer ) { | |
const reader = new BinaryReader( buffer ); | |
reader.skip( 23 ); // skip magic 23 bytes | |
const version = reader.getUint32(); | |
if ( version < 6400 ) { | |
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + version ); | |
} | |
const allNodes = new FBXTree(); | |
while ( ! this.endOfContent( reader ) ) { | |
const node = this.parseNode( reader, version ); | |
if ( node !== null ) allNodes.add( node.name, node ); | |
} | |
return allNodes; | |
} | |
// Check if reader has reached the end of content. | |
endOfContent( reader ) { | |
// footer size: 160bytes + 16-byte alignment padding | |
// - 16bytes: magic | |
// - padding til 16-byte alignment (at least 1byte?) | |
// (seems like some exporters embed fixed 15 or 16bytes?) | |
// - 4bytes: magic | |
// - 4bytes: version | |
// - 120bytes: zero | |
// - 16bytes: magic | |
if ( reader.size() % 16 === 0 ) { | |
return ( ( reader.getOffset() + 160 + 16 ) & ~ 0xf ) >= reader.size(); | |
} else { | |
return reader.getOffset() + 160 + 16 >= reader.size(); | |
} | |
} | |
// recursively parse nodes until the end of the file is reached | |
parseNode( reader, version ) { | |
const node = {}; | |
// The first three data sizes depends on version. | |
const endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); | |
const numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); | |
( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); // the returned propertyListLen is not used | |
const nameLen = reader.getUint8(); | |
const name = reader.getString( nameLen ); | |
// Regards this node as NULL-record if endOffset is zero | |
if ( endOffset === 0 ) return null; | |
const propertyList = []; | |
for ( let i = 0; i < numProperties; i ++ ) { | |
propertyList.push( this.parseProperty( reader ) ); | |
} | |
// Regards the first three elements in propertyList as id, attrName, and attrType | |
const id = propertyList.length > 0 ? propertyList[ 0 ] : ''; | |
const attrName = propertyList.length > 1 ? propertyList[ 1 ] : ''; | |
const attrType = propertyList.length > 2 ? propertyList[ 2 ] : ''; | |
// check if this node represents just a single property | |
// like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]} | |
node.singleProperty = ( numProperties === 1 && reader.getOffset() === endOffset ) ? true : false; | |
while ( endOffset > reader.getOffset() ) { | |
const subNode = this.parseNode( reader, version ); | |
if ( subNode !== null ) this.parseSubNode( name, node, subNode ); | |
} | |
node.propertyList = propertyList; // raw property list used by parent | |
if ( typeof id === 'number' ) node.id = id; | |
if ( attrName !== '' ) node.attrName = attrName; | |
if ( attrType !== '' ) node.attrType = attrType; | |
if ( name !== '' ) node.name = name; | |
return node; | |
} | |
parseSubNode( name, node, subNode ) { | |
// special case: child node is single property | |
if ( subNode.singleProperty === true ) { | |
const value = subNode.propertyList[ 0 ]; | |
if ( Array.isArray( value ) ) { | |
node[ subNode.name ] = subNode; | |
subNode.a = value; | |
} else { | |
node[ subNode.name ] = value; | |
} | |
} else if ( name === 'Connections' && subNode.name === 'C' ) { | |
const array = []; | |
subNode.propertyList.forEach( function ( property, i ) { | |
// first Connection is FBX type (OO, OP, etc.). We'll discard these | |
if ( i !== 0 ) array.push( property ); | |
} ); | |
if ( node.connections === undefined ) { | |
node.connections = []; | |
} | |
node.connections.push( array ); | |
} else if ( subNode.name === 'Properties70' ) { | |
const keys = Object.keys( subNode ); | |
keys.forEach( function ( key ) { | |
node[ key ] = subNode[ key ]; | |
} ); | |
} else if ( name === 'Properties70' && subNode.name === 'P' ) { | |
let innerPropName = subNode.propertyList[ 0 ]; | |
let innerPropType1 = subNode.propertyList[ 1 ]; | |
const innerPropType2 = subNode.propertyList[ 2 ]; | |
const innerPropFlag = subNode.propertyList[ 3 ]; | |
let innerPropValue; | |
if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' ); | |
if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' ); | |
if ( innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) { | |
innerPropValue = [ | |
subNode.propertyList[ 4 ], | |
subNode.propertyList[ 5 ], | |
subNode.propertyList[ 6 ] | |
]; | |
} else { | |
innerPropValue = subNode.propertyList[ 4 ]; | |
} | |
// this will be copied to parent, see above | |
node[ innerPropName ] = { | |
'type': innerPropType1, | |
'type2': innerPropType2, | |
'flag': innerPropFlag, | |
'value': innerPropValue | |
}; | |
} else if ( node[ subNode.name ] === undefined ) { | |
if ( typeof subNode.id === 'number' ) { | |
node[ subNode.name ] = {}; | |
node[ subNode.name ][ subNode.id ] = subNode; | |
} else { | |
node[ subNode.name ] = subNode; | |
} | |
} else { | |
if ( subNode.name === 'PoseNode' ) { | |
if ( ! Array.isArray( node[ subNode.name ] ) ) { | |
node[ subNode.name ] = [ node[ subNode.name ] ]; | |
} | |
node[ subNode.name ].push( subNode ); | |
} else if ( node[ subNode.name ][ subNode.id ] === undefined ) { | |
node[ subNode.name ][ subNode.id ] = subNode; | |
} | |
} | |
} | |
parseProperty( reader ) { | |
const type = reader.getString( 1 ); | |
let length; | |
switch ( type ) { | |
case 'C': | |
return reader.getBoolean(); | |
case 'D': | |
return reader.getFloat64(); | |
case 'F': | |
return reader.getFloat32(); | |
case 'I': | |
return reader.getInt32(); | |
case 'L': | |
return reader.getInt64(); | |
case 'R': | |
length = reader.getUint32(); | |
return reader.getArrayBuffer( length ); | |
case 'S': | |
length = reader.getUint32(); | |
return reader.getString( length ); | |
case 'Y': | |
return reader.getInt16(); | |
case 'b': | |
case 'c': | |
case 'd': | |
case 'f': | |
case 'i': | |
case 'l': | |
const arrayLength = reader.getUint32(); | |
const encoding = reader.getUint32(); // 0: non-compressed, 1: compressed | |
const compressedLength = reader.getUint32(); | |
if ( encoding === 0 ) { | |
switch ( type ) { | |
case 'b': | |
case 'c': | |
return reader.getBooleanArray( arrayLength ); | |
case 'd': | |
return reader.getFloat64Array( arrayLength ); | |
case 'f': | |
return reader.getFloat32Array( arrayLength ); | |
case 'i': | |
return reader.getInt32Array( arrayLength ); | |
case 'l': | |
return reader.getInt64Array( arrayLength ); | |
} | |
} | |
const data = fflate.unzlibSync( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) ); | |
const reader2 = new BinaryReader( data.buffer ); | |
switch ( type ) { | |
case 'b': | |
case 'c': | |
return reader2.getBooleanArray( arrayLength ); | |
case 'd': | |
return reader2.getFloat64Array( arrayLength ); | |
case 'f': | |
return reader2.getFloat32Array( arrayLength ); | |
case 'i': | |
return reader2.getInt32Array( arrayLength ); | |
case 'l': | |
return reader2.getInt64Array( arrayLength ); | |
} | |
break; // cannot happen but is required by the DeepScan | |
default: | |
throw new Error( 'THREE.FBXLoader: Unknown property type ' + type ); | |
} | |
} | |
} | |
class BinaryReader { | |
constructor( buffer, littleEndian ) { | |
this.dv = new DataView( buffer ); | |
this.offset = 0; | |
this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true; | |
this._textDecoder = new TextDecoder(); | |
} | |
getOffset() { | |
return this.offset; | |
} | |
size() { | |
return this.dv.buffer.byteLength; | |
} | |
skip( length ) { | |
this.offset += length; | |
} | |
// seems like true/false representation depends on exporter. | |
// true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54) | |
// then sees LSB. | |
getBoolean() { | |
return ( this.getUint8() & 1 ) === 1; | |
} | |
getBooleanArray( size ) { | |
const a = []; | |
for ( let i = 0; i < size; i ++ ) { | |
a.push( this.getBoolean() ); | |
} | |
return a; | |
} | |
getUint8() { | |
const value = this.dv.getUint8( this.offset ); | |
this.offset += 1; | |
return value; | |
} | |
getInt16() { | |
const value = this.dv.getInt16( this.offset, this.littleEndian ); | |
this.offset += 2; | |
return value; | |
} | |
getInt32() { | |
const value = this.dv.getInt32( this.offset, this.littleEndian ); | |
this.offset += 4; | |
return value; | |
} | |
getInt32Array( size ) { | |
const a = []; | |
for ( let i = 0; i < size; i ++ ) { | |
a.push( this.getInt32() ); | |
} | |
return a; | |
} | |
getUint32() { | |
const value = this.dv.getUint32( this.offset, this.littleEndian ); | |
this.offset += 4; | |
return value; | |
} | |
// JavaScript doesn't support 64-bit integer so calculate this here | |
// 1 << 32 will return 1 so using multiply operation instead here. | |
// There's a possibility that this method returns wrong value if the value | |
// is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER. | |
// TODO: safely handle 64-bit integer | |
getInt64() { | |
let low, high; | |
if ( this.littleEndian ) { | |
low = this.getUint32(); | |
high = this.getUint32(); | |
} else { | |
high = this.getUint32(); | |
low = this.getUint32(); | |
} | |
// calculate negative value | |
if ( high & 0x80000000 ) { | |
high = ~ high & 0xFFFFFFFF; | |
low = ~ low & 0xFFFFFFFF; | |
if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF; | |
low = ( low + 1 ) & 0xFFFFFFFF; | |
return - ( high * 0x100000000 + low ); | |
} | |
return high * 0x100000000 + low; | |
} | |
getInt64Array( size ) { | |
const a = []; | |
for ( let i = 0; i < size; i ++ ) { | |
a.push( this.getInt64() ); | |
} | |
return a; | |
} | |
// Note: see getInt64() comment | |
getUint64() { | |
let low, high; | |
if ( this.littleEndian ) { | |
low = this.getUint32(); | |
high = this.getUint32(); | |
} else { | |
high = this.getUint32(); | |
low = this.getUint32(); | |
} | |
return high * 0x100000000 + low; | |
} | |
getFloat32() { | |
const value = this.dv.getFloat32( this.offset, this.littleEndian ); | |
this.offset += 4; | |
return value; | |
} | |
getFloat32Array( size ) { | |
const a = []; | |
for ( let i = 0; i < size; i ++ ) { | |
a.push( this.getFloat32() ); | |
} | |
return a; | |
} | |
getFloat64() { | |
const value = this.dv.getFloat64( this.offset, this.littleEndian ); | |
this.offset += 8; | |
return value; | |
} | |
getFloat64Array( size ) { | |
const a = []; | |
for ( let i = 0; i < size; i ++ ) { | |
a.push( this.getFloat64() ); | |
} | |
return a; | |
} | |
getArrayBuffer( size ) { | |
const value = this.dv.buffer.slice( this.offset, this.offset + size ); | |
this.offset += size; | |
return value; | |
} | |
getString( size ) { | |
const start = this.offset; | |
let a = new Uint8Array( this.dv.buffer, start, size ); | |
this.skip( size ); | |
const nullByte = a.indexOf( 0 ); | |
if ( nullByte >= 0 ) a = new Uint8Array( this.dv.buffer, start, nullByte ); | |
return this._textDecoder.decode( a ); | |
} | |
} | |
// FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format) | |
// and BinaryParser( FBX Binary format) | |
class FBXTree { | |
add( key, val ) { | |
this[ key ] = val; | |
} | |
} | |
// ************** UTILITY FUNCTIONS ************** | |
function isFbxFormatBinary( buffer ) { | |
const CORRECT = 'Kaydara\u0020FBX\u0020Binary\u0020\u0020\0'; | |
return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length ); | |
} | |
function isFbxFormatASCII( text ) { | |
const CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ]; | |
let cursor = 0; | |
function read( offset ) { | |
const result = text[ offset - 1 ]; | |
text = text.slice( cursor + offset ); | |
cursor ++; | |
return result; | |
} | |
for ( let i = 0; i < CORRECT.length; ++ i ) { | |
const num = read( 1 ); | |
if ( num === CORRECT[ i ] ) { | |
return false; | |
} | |
} | |
return true; | |
} | |
function getFbxVersion( text ) { | |
const versionRegExp = /FBXVersion: (\d+)/; | |
const match = text.match( versionRegExp ); | |
if ( match ) { | |
const version = parseInt( match[ 1 ] ); | |
return version; | |
} | |
throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' ); | |
} | |
// Converts FBX ticks into real time seconds. | |
function convertFBXTimeToSeconds( time ) { | |
return time / 46186158000; | |
} | |
const dataArray = []; | |
// extracts the data from the correct position in the FBX array based on indexing type | |
function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) { | |
let index; | |
switch ( infoObject.mappingType ) { | |
case 'ByPolygonVertex' : | |
index = polygonVertexIndex; | |
break; | |
case 'ByPolygon' : | |
index = polygonIndex; | |
break; | |
case 'ByVertice' : | |
index = vertexIndex; | |
break; | |
case 'AllSame' : | |
index = infoObject.indices[ 0 ]; | |
break; | |
default : | |
console.warn( 'THREE.FBXLoader: unknown attribute mapping type ' + infoObject.mappingType ); | |
} | |
if ( infoObject.referenceType === 'IndexToDirect' ) index = infoObject.indices[ index ]; | |
const from = index * infoObject.dataSize; | |
const to = from + infoObject.dataSize; | |
return slice( dataArray, infoObject.buffer, from, to ); | |
} | |
const tempEuler = new Euler(); | |
const tempVec = new Vector3(); | |
// generate transformation from FBX transform data | |
// ref: https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_10CDD63C_79C1_4F2D_BB28_AD2BE65A02ED_htm | |
// ref: http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/_transformations_2main_8cxx-example.html,topicNumber=cpp_ref__transformations_2main_8cxx_example_htmlfc10a1e1-b18d-4e72-9dc0-70d0f1959f5e | |
function generateTransform( transformData ) { | |
const lTranslationM = new Matrix4(); | |
const lPreRotationM = new Matrix4(); | |
const lRotationM = new Matrix4(); | |
const lPostRotationM = new Matrix4(); | |
const lScalingM = new Matrix4(); | |
const lScalingPivotM = new Matrix4(); | |
const lScalingOffsetM = new Matrix4(); | |
const lRotationOffsetM = new Matrix4(); | |
const lRotationPivotM = new Matrix4(); | |
const lParentGX = new Matrix4(); | |
const lParentLX = new Matrix4(); | |
const lGlobalT = new Matrix4(); | |
const inheritType = ( transformData.inheritType ) ? transformData.inheritType : 0; | |
if ( transformData.translation ) lTranslationM.setPosition( tempVec.fromArray( transformData.translation ) ); | |
// For Maya models using "Joint Orient", Euler order only applies to rotation, not pre/post-rotations | |
const defaultEulerOrder = getEulerOrder( 0 ); | |
if ( transformData.preRotation ) { | |
const array = transformData.preRotation.map( MathUtils.degToRad ); | |
array.push( defaultEulerOrder ); | |
lPreRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) ); | |
} | |
if ( transformData.rotation ) { | |
const array = transformData.rotation.map( MathUtils.degToRad ); | |
array.push( transformData.eulerOrder || defaultEulerOrder ); | |
lRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) ); | |
} | |
if ( transformData.postRotation ) { | |
const array = transformData.postRotation.map( MathUtils.degToRad ); | |
array.push( defaultEulerOrder ); | |
lPostRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) ); | |
lPostRotationM.invert(); | |
} | |
if ( transformData.scale ) lScalingM.scale( tempVec.fromArray( transformData.scale ) ); | |
// Pivots and offsets | |
if ( transformData.scalingOffset ) lScalingOffsetM.setPosition( tempVec.fromArray( transformData.scalingOffset ) ); | |
if ( transformData.scalingPivot ) lScalingPivotM.setPosition( tempVec.fromArray( transformData.scalingPivot ) ); | |
if ( transformData.rotationOffset ) lRotationOffsetM.setPosition( tempVec.fromArray( transformData.rotationOffset ) ); | |
if ( transformData.rotationPivot ) lRotationPivotM.setPosition( tempVec.fromArray( transformData.rotationPivot ) ); | |
// parent transform | |
if ( transformData.parentMatrixWorld ) { | |
lParentLX.copy( transformData.parentMatrix ); | |
lParentGX.copy( transformData.parentMatrixWorld ); | |
} | |
const lLRM = lPreRotationM.clone().multiply( lRotationM ).multiply( lPostRotationM ); | |
// Global Rotation | |
const lParentGRM = new Matrix4(); | |
lParentGRM.extractRotation( lParentGX ); | |
// Global Shear*Scaling | |
const lParentTM = new Matrix4(); | |
lParentTM.copyPosition( lParentGX ); | |
const lParentGRSM = lParentTM.clone().invert().multiply( lParentGX ); | |
const lParentGSM = lParentGRM.clone().invert().multiply( lParentGRSM ); | |
const lLSM = lScalingM; | |
const lGlobalRS = new Matrix4(); | |
if ( inheritType === 0 ) { | |
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM ).multiply( lLSM ); | |
} else if ( inheritType === 1 ) { | |
lGlobalRS.copy( lParentGRM ).multiply( lParentGSM ).multiply( lLRM ).multiply( lLSM ); | |
} else { | |
const lParentLSM = new Matrix4().scale( new Vector3().setFromMatrixScale( lParentLX ) ); | |
const lParentLSM_inv = lParentLSM.clone().invert(); | |
const lParentGSM_noLocal = lParentGSM.clone().multiply( lParentLSM_inv ); | |
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM_noLocal ).multiply( lLSM ); | |
} | |
const lRotationPivotM_inv = lRotationPivotM.clone().invert(); | |
const lScalingPivotM_inv = lScalingPivotM.clone().invert(); | |
// Calculate the local transform matrix | |
let lTransform = lTranslationM.clone().multiply( lRotationOffsetM ).multiply( lRotationPivotM ).multiply( lPreRotationM ).multiply( lRotationM ).multiply( lPostRotationM ).multiply( lRotationPivotM_inv ).multiply( lScalingOffsetM ).multiply( lScalingPivotM ).multiply( lScalingM ).multiply( lScalingPivotM_inv ); | |
const lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition( lTransform ); | |
const lGlobalTranslation = lParentGX.clone().multiply( lLocalTWithAllPivotAndOffsetInfo ); | |
lGlobalT.copyPosition( lGlobalTranslation ); | |
lTransform = lGlobalT.clone().multiply( lGlobalRS ); | |
// from global to local | |
lTransform.premultiply( lParentGX.invert() ); | |
return lTransform; | |
} | |
// Returns the three.js intrinsic Euler order corresponding to FBX extrinsic Euler order | |
// ref: http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html | |
function getEulerOrder( order ) { | |
order = order || 0; | |
const enums = [ | |
'ZYX', // -> XYZ extrinsic | |
'YZX', // -> XZY extrinsic | |
'XZY', // -> YZX extrinsic | |
'ZXY', // -> YXZ extrinsic | |
'YXZ', // -> ZXY extrinsic | |
'XYZ', // -> ZYX extrinsic | |
//'SphericXYZ', // not possible to support | |
]; | |
if ( order === 6 ) { | |
console.warn( 'THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.' ); | |
return enums[ 0 ]; | |
} | |
return enums[ order ]; | |
} | |
// Parses comma separated list of numbers and returns them an array. | |
// Used internally by the TextParser | |
function parseNumberArray( value ) { | |
const array = value.split( ',' ).map( function ( val ) { | |
return parseFloat( val ); | |
} ); | |
return array; | |
} | |
function convertArrayBufferToString( buffer, from, to ) { | |
if ( from === undefined ) from = 0; | |
if ( to === undefined ) to = buffer.byteLength; | |
return new TextDecoder().decode( new Uint8Array( buffer, from, to ) ); | |
} | |
function append( a, b ) { | |
for ( let i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) { | |
a[ j ] = b[ i ]; | |
} | |
} | |
function slice( a, b, from, to ) { | |
for ( let i = from, j = 0; i < to; i ++, j ++ ) { | |
a[ j ] = b[ i ]; | |
} | |
return a; | |
} | |
export { FBXLoader }; | |