Spaces:
Running
Running
import { | |
BufferAttribute, | |
BufferGeometry, | |
Color, | |
FileLoader, | |
Float32BufferAttribute, | |
Loader, | |
Vector3, | |
SRGBColorSpace | |
} from 'three'; | |
/** | |
* Description: A THREE loader for STL ASCII files, as created by Solidworks and other CAD programs. | |
* | |
* Supports both binary and ASCII encoded files, with automatic detection of type. | |
* | |
* The loader returns a non-indexed buffer geometry. | |
* | |
* Limitations: | |
* Binary decoding supports "Magics" color format (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL). | |
* There is perhaps some question as to how valid it is to always assume little-endian-ness. | |
* ASCII decoding assumes file is UTF-8. | |
* | |
* Usage: | |
* const loader = new STLLoader(); | |
* loader.load( './models/stl/slotted_disk.stl', function ( geometry ) { | |
* scene.add( new THREE.Mesh( geometry ) ); | |
* }); | |
* | |
* For binary STLs geometry might contain colors for vertices. To use it: | |
* // use the same code to load STL as above | |
* if (geometry.hasColors) { | |
* material = new THREE.MeshPhongMaterial({ opacity: geometry.alpha, vertexColors: true }); | |
* } else { .... } | |
* const mesh = new THREE.Mesh( geometry, material ); | |
* | |
* For ASCII STLs containing multiple solids, each solid is assigned to a different group. | |
* Groups can be used to assign a different color by defining an array of materials with the same length of | |
* geometry.groups and passing it to the Mesh constructor: | |
* | |
* const mesh = new THREE.Mesh( geometry, material ); | |
* | |
* For example: | |
* | |
* const materials = []; | |
* const nGeometryGroups = geometry.groups.length; | |
* | |
* const colorMap = ...; // Some logic to index colors. | |
* | |
* for (let i = 0; i < nGeometryGroups; i++) { | |
* | |
* const material = new THREE.MeshPhongMaterial({ | |
* color: colorMap[i], | |
* wireframe: false | |
* }); | |
* | |
* } | |
* | |
* materials.push(material); | |
* const mesh = new THREE.Mesh(geometry, materials); | |
*/ | |
class STLLoader extends Loader { | |
constructor( manager ) { | |
super( manager ); | |
} | |
load( url, onLoad, onProgress, onError ) { | |
const scope = this; | |
const loader = new FileLoader( this.manager ); | |
loader.setPath( this.path ); | |
loader.setResponseType( 'arraybuffer' ); | |
loader.setRequestHeader( this.requestHeader ); | |
loader.setWithCredentials( this.withCredentials ); | |
loader.load( url, function ( text ) { | |
try { | |
onLoad( scope.parse( text ) ); | |
} catch ( e ) { | |
if ( onError ) { | |
onError( e ); | |
} else { | |
console.error( e ); | |
} | |
scope.manager.itemError( url ); | |
} | |
}, onProgress, onError ); | |
} | |
parse( data ) { | |
function isBinary( data ) { | |
const reader = new DataView( data ); | |
const face_size = ( 32 / 8 * 3 ) + ( ( 32 / 8 * 3 ) * 3 ) + ( 16 / 8 ); | |
const n_faces = reader.getUint32( 80, true ); | |
const expect = 80 + ( 32 / 8 ) + ( n_faces * face_size ); | |
if ( expect === reader.byteLength ) { | |
return true; | |
} | |
// An ASCII STL data must begin with 'solid ' as the first six bytes. | |
// However, ASCII STLs lacking the SPACE after the 'd' are known to be | |
// plentiful. So, check the first 5 bytes for 'solid'. | |
// Several encodings, such as UTF-8, precede the text with up to 5 bytes: | |
// https://en.wikipedia.org/wiki/Byte_order_mark#Byte_order_marks_by_encoding | |
// Search for "solid" to start anywhere after those prefixes. | |
// US-ASCII ordinal values for 's', 'o', 'l', 'i', 'd' | |
const solid = [ 115, 111, 108, 105, 100 ]; | |
for ( let off = 0; off < 5; off ++ ) { | |
// If "solid" text is matched to the current offset, declare it to be an ASCII STL. | |
if ( matchDataViewAt( solid, reader, off ) ) return false; | |
} | |
// Couldn't find "solid" text at the beginning; it is binary STL. | |
return true; | |
} | |
function matchDataViewAt( query, reader, offset ) { | |
// Check if each byte in query matches the corresponding byte from the current offset | |
for ( let i = 0, il = query.length; i < il; i ++ ) { | |
if ( query[ i ] !== reader.getUint8( offset + i ) ) return false; | |
} | |
return true; | |
} | |
function parseBinary( data ) { | |
const reader = new DataView( data ); | |
const faces = reader.getUint32( 80, true ); | |
let r, g, b, hasColors = false, colors; | |
let defaultR, defaultG, defaultB, alpha; | |
// process STL header | |
// check for default color in header ("COLOR=rgba" sequence). | |
for ( let index = 0; index < 80 - 10; index ++ ) { | |
if ( ( reader.getUint32( index, false ) == 0x434F4C4F /*COLO*/ ) && | |
( reader.getUint8( index + 4 ) == 0x52 /*'R'*/ ) && | |
( reader.getUint8( index + 5 ) == 0x3D /*'='*/ ) ) { | |
hasColors = true; | |
colors = new Float32Array( faces * 3 * 3 ); | |
defaultR = reader.getUint8( index + 6 ) / 255; | |
defaultG = reader.getUint8( index + 7 ) / 255; | |
defaultB = reader.getUint8( index + 8 ) / 255; | |
alpha = reader.getUint8( index + 9 ) / 255; | |
} | |
} | |
const dataOffset = 84; | |
const faceLength = 12 * 4 + 2; | |
const geometry = new BufferGeometry(); | |
const vertices = new Float32Array( faces * 3 * 3 ); | |
const normals = new Float32Array( faces * 3 * 3 ); | |
const color = new Color(); | |
for ( let face = 0; face < faces; face ++ ) { | |
const start = dataOffset + face * faceLength; | |
const normalX = reader.getFloat32( start, true ); | |
const normalY = reader.getFloat32( start + 4, true ); | |
const normalZ = reader.getFloat32( start + 8, true ); | |
if ( hasColors ) { | |
const packedColor = reader.getUint16( start + 48, true ); | |
if ( ( packedColor & 0x8000 ) === 0 ) { | |
// facet has its own unique color | |
r = ( packedColor & 0x1F ) / 31; | |
g = ( ( packedColor >> 5 ) & 0x1F ) / 31; | |
b = ( ( packedColor >> 10 ) & 0x1F ) / 31; | |
} else { | |
r = defaultR; | |
g = defaultG; | |
b = defaultB; | |
} | |
} | |
for ( let i = 1; i <= 3; i ++ ) { | |
const vertexstart = start + i * 12; | |
const componentIdx = ( face * 3 * 3 ) + ( ( i - 1 ) * 3 ); | |
vertices[ componentIdx ] = reader.getFloat32( vertexstart, true ); | |
vertices[ componentIdx + 1 ] = reader.getFloat32( vertexstart + 4, true ); | |
vertices[ componentIdx + 2 ] = reader.getFloat32( vertexstart + 8, true ); | |
normals[ componentIdx ] = normalX; | |
normals[ componentIdx + 1 ] = normalY; | |
normals[ componentIdx + 2 ] = normalZ; | |
if ( hasColors ) { | |
color.setRGB( r, g, b, SRGBColorSpace ); | |
colors[ componentIdx ] = color.r; | |
colors[ componentIdx + 1 ] = color.g; | |
colors[ componentIdx + 2 ] = color.b; | |
} | |
} | |
} | |
geometry.setAttribute( 'position', new BufferAttribute( vertices, 3 ) ); | |
geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) ); | |
if ( hasColors ) { | |
geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) ); | |
geometry.hasColors = true; | |
geometry.alpha = alpha; | |
} | |
return geometry; | |
} | |
function parseASCII( data ) { | |
const geometry = new BufferGeometry(); | |
const patternSolid = /solid([\s\S]*?)endsolid/g; | |
const patternFace = /facet([\s\S]*?)endfacet/g; | |
const patternName = /solid\s(.+)/; | |
let faceCounter = 0; | |
const patternFloat = /[\s]+([+-]?(?:\d*)(?:\.\d*)?(?:[eE][+-]?\d+)?)/.source; | |
const patternVertex = new RegExp( 'vertex' + patternFloat + patternFloat + patternFloat, 'g' ); | |
const patternNormal = new RegExp( 'normal' + patternFloat + patternFloat + patternFloat, 'g' ); | |
const vertices = []; | |
const normals = []; | |
const groupNames = []; | |
const normal = new Vector3(); | |
let result; | |
let groupCount = 0; | |
let startVertex = 0; | |
let endVertex = 0; | |
while ( ( result = patternSolid.exec( data ) ) !== null ) { | |
startVertex = endVertex; | |
const solid = result[ 0 ]; | |
const name = ( result = patternName.exec( solid ) ) !== null ? result[ 1 ] : ''; | |
groupNames.push( name ); | |
while ( ( result = patternFace.exec( solid ) ) !== null ) { | |
let vertexCountPerFace = 0; | |
let normalCountPerFace = 0; | |
const text = result[ 0 ]; | |
while ( ( result = patternNormal.exec( text ) ) !== null ) { | |
normal.x = parseFloat( result[ 1 ] ); | |
normal.y = parseFloat( result[ 2 ] ); | |
normal.z = parseFloat( result[ 3 ] ); | |
normalCountPerFace ++; | |
} | |
while ( ( result = patternVertex.exec( text ) ) !== null ) { | |
vertices.push( parseFloat( result[ 1 ] ), parseFloat( result[ 2 ] ), parseFloat( result[ 3 ] ) ); | |
normals.push( normal.x, normal.y, normal.z ); | |
vertexCountPerFace ++; | |
endVertex ++; | |
} | |
// every face have to own ONE valid normal | |
if ( normalCountPerFace !== 1 ) { | |
console.error( 'THREE.STLLoader: Something isn\'t right with the normal of face number ' + faceCounter ); | |
} | |
// each face have to own THREE valid vertices | |
if ( vertexCountPerFace !== 3 ) { | |
console.error( 'THREE.STLLoader: Something isn\'t right with the vertices of face number ' + faceCounter ); | |
} | |
faceCounter ++; | |
} | |
const start = startVertex; | |
const count = endVertex - startVertex; | |
geometry.userData.groupNames = groupNames; | |
geometry.addGroup( start, count, groupCount ); | |
groupCount ++; | |
} | |
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); | |
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); | |
return geometry; | |
} | |
function ensureString( buffer ) { | |
if ( typeof buffer !== 'string' ) { | |
return new TextDecoder().decode( buffer ); | |
} | |
return buffer; | |
} | |
function ensureBinary( buffer ) { | |
if ( typeof buffer === 'string' ) { | |
const array_buffer = new Uint8Array( buffer.length ); | |
for ( let i = 0; i < buffer.length; i ++ ) { | |
array_buffer[ i ] = buffer.charCodeAt( i ) & 0xff; // implicitly assumes little-endian | |
} | |
return array_buffer.buffer || array_buffer; | |
} else { | |
return buffer; | |
} | |
} | |
// start | |
const binData = ensureBinary( data ); | |
return isBinary( binData ) ? parseBinary( binData ) : parseASCII( ensureString( data ) ); | |
} | |
} | |
export { STLLoader }; | |