Spaces:
Running
Running
import { | |
Box2, | |
BufferGeometry, | |
FileLoader, | |
Float32BufferAttribute, | |
Loader, | |
Matrix3, | |
Path, | |
Shape, | |
ShapePath, | |
ShapeUtils, | |
SRGBColorSpace, | |
Vector2, | |
Vector3 | |
} from 'three'; | |
const COLOR_SPACE_SVG = SRGBColorSpace; | |
class SVGLoader extends Loader { | |
constructor( manager ) { | |
super( manager ); | |
// Default dots per inch | |
this.defaultDPI = 90; | |
// Accepted units: 'mm', 'cm', 'in', 'pt', 'pc', 'px' | |
this.defaultUnit = 'px'; | |
} | |
load( url, onLoad, onProgress, onError ) { | |
const scope = this; | |
const loader = new FileLoader( scope.manager ); | |
loader.setPath( scope.path ); | |
loader.setRequestHeader( scope.requestHeader ); | |
loader.setWithCredentials( scope.withCredentials ); | |
loader.load( url, function ( text ) { | |
try { | |
onLoad( scope.parse( text ) ); | |
} catch ( e ) { | |
if ( onError ) { | |
onError( e ); | |
} else { | |
console.error( e ); | |
} | |
scope.manager.itemError( url ); | |
} | |
}, onProgress, onError ); | |
} | |
parse( text ) { | |
const scope = this; | |
function parseNode( node, style ) { | |
if ( node.nodeType !== 1 ) return; | |
const transform = getNodeTransform( node ); | |
let isDefsNode = false; | |
let path = null; | |
switch ( node.nodeName ) { | |
case 'svg': | |
style = parseStyle( node, style ); | |
break; | |
case 'style': | |
parseCSSStylesheet( node ); | |
break; | |
case 'g': | |
style = parseStyle( node, style ); | |
break; | |
case 'path': | |
style = parseStyle( node, style ); | |
if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node ); | |
break; | |
case 'rect': | |
style = parseStyle( node, style ); | |
path = parseRectNode( node ); | |
break; | |
case 'polygon': | |
style = parseStyle( node, style ); | |
path = parsePolygonNode( node ); | |
break; | |
case 'polyline': | |
style = parseStyle( node, style ); | |
path = parsePolylineNode( node ); | |
break; | |
case 'circle': | |
style = parseStyle( node, style ); | |
path = parseCircleNode( node ); | |
break; | |
case 'ellipse': | |
style = parseStyle( node, style ); | |
path = parseEllipseNode( node ); | |
break; | |
case 'line': | |
style = parseStyle( node, style ); | |
path = parseLineNode( node ); | |
break; | |
case 'defs': | |
isDefsNode = true; | |
break; | |
case 'use': | |
style = parseStyle( node, style ); | |
const href = node.getAttributeNS( 'http://www.w3.org/1999/xlink', 'href' ) || ''; | |
const usedNodeId = href.substring( 1 ); | |
const usedNode = node.viewportElement.getElementById( usedNodeId ); | |
if ( usedNode ) { | |
parseNode( usedNode, style ); | |
} else { | |
console.warn( 'SVGLoader: \'use node\' references non-existent node id: ' + usedNodeId ); | |
} | |
break; | |
default: | |
// console.log( node ); | |
} | |
if ( path ) { | |
if ( style.fill !== undefined && style.fill !== 'none' ) { | |
path.color.setStyle( style.fill, COLOR_SPACE_SVG ); | |
} | |
transformPath( path, currentTransform ); | |
paths.push( path ); | |
path.userData = { node: node, style: style }; | |
} | |
const childNodes = node.childNodes; | |
for ( let i = 0; i < childNodes.length; i ++ ) { | |
const node = childNodes[ i ]; | |
if ( isDefsNode && node.nodeName !== 'style' && node.nodeName !== 'defs' ) { | |
// Ignore everything in defs except CSS style definitions | |
// and nested defs, because it is OK by the standard to have | |
// <style/> there. | |
continue; | |
} | |
parseNode( node, style ); | |
} | |
if ( transform ) { | |
transformStack.pop(); | |
if ( transformStack.length > 0 ) { | |
currentTransform.copy( transformStack[ transformStack.length - 1 ] ); | |
} else { | |
currentTransform.identity(); | |
} | |
} | |
} | |
function parsePathNode( node ) { | |
const path = new ShapePath(); | |
const point = new Vector2(); | |
const control = new Vector2(); | |
const firstPoint = new Vector2(); | |
let isFirstPoint = true; | |
let doSetFirstPoint = false; | |
const d = node.getAttribute( 'd' ); | |
if ( d === '' || d === 'none' ) return null; | |
// console.log( d ); | |
const commands = d.match( /[a-df-z][^a-df-z]*/ig ); | |
for ( let i = 0, l = commands.length; i < l; i ++ ) { | |
const command = commands[ i ]; | |
const type = command.charAt( 0 ); | |
const data = command.slice( 1 ).trim(); | |
if ( isFirstPoint === true ) { | |
doSetFirstPoint = true; | |
isFirstPoint = false; | |
} | |
let numbers; | |
switch ( type ) { | |
case 'M': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) { | |
point.x = numbers[ j + 0 ]; | |
point.y = numbers[ j + 1 ]; | |
control.x = point.x; | |
control.y = point.y; | |
if ( j === 0 ) { | |
path.moveTo( point.x, point.y ); | |
} else { | |
path.lineTo( point.x, point.y ); | |
} | |
if ( j === 0 ) firstPoint.copy( point ); | |
} | |
break; | |
case 'H': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) { | |
point.x = numbers[ j ]; | |
control.x = point.x; | |
control.y = point.y; | |
path.lineTo( point.x, point.y ); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'V': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) { | |
point.y = numbers[ j ]; | |
control.x = point.x; | |
control.y = point.y; | |
path.lineTo( point.x, point.y ); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'L': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) { | |
point.x = numbers[ j + 0 ]; | |
point.y = numbers[ j + 1 ]; | |
control.x = point.x; | |
control.y = point.y; | |
path.lineTo( point.x, point.y ); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'C': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) { | |
path.bezierCurveTo( | |
numbers[ j + 0 ], | |
numbers[ j + 1 ], | |
numbers[ j + 2 ], | |
numbers[ j + 3 ], | |
numbers[ j + 4 ], | |
numbers[ j + 5 ] | |
); | |
control.x = numbers[ j + 2 ]; | |
control.y = numbers[ j + 3 ]; | |
point.x = numbers[ j + 4 ]; | |
point.y = numbers[ j + 5 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'S': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) { | |
path.bezierCurveTo( | |
getReflection( point.x, control.x ), | |
getReflection( point.y, control.y ), | |
numbers[ j + 0 ], | |
numbers[ j + 1 ], | |
numbers[ j + 2 ], | |
numbers[ j + 3 ] | |
); | |
control.x = numbers[ j + 0 ]; | |
control.y = numbers[ j + 1 ]; | |
point.x = numbers[ j + 2 ]; | |
point.y = numbers[ j + 3 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'Q': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) { | |
path.quadraticCurveTo( | |
numbers[ j + 0 ], | |
numbers[ j + 1 ], | |
numbers[ j + 2 ], | |
numbers[ j + 3 ] | |
); | |
control.x = numbers[ j + 0 ]; | |
control.y = numbers[ j + 1 ]; | |
point.x = numbers[ j + 2 ]; | |
point.y = numbers[ j + 3 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'T': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) { | |
const rx = getReflection( point.x, control.x ); | |
const ry = getReflection( point.y, control.y ); | |
path.quadraticCurveTo( | |
rx, | |
ry, | |
numbers[ j + 0 ], | |
numbers[ j + 1 ] | |
); | |
control.x = rx; | |
control.y = ry; | |
point.x = numbers[ j + 0 ]; | |
point.y = numbers[ j + 1 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'A': | |
numbers = parseFloats( data, [ 3, 4 ], 7 ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) { | |
// skip command if start point == end point | |
if ( numbers[ j + 5 ] == point.x && numbers[ j + 6 ] == point.y ) continue; | |
const start = point.clone(); | |
point.x = numbers[ j + 5 ]; | |
point.y = numbers[ j + 6 ]; | |
control.x = point.x; | |
control.y = point.y; | |
parseArcCommand( | |
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point | |
); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'm': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) { | |
point.x += numbers[ j + 0 ]; | |
point.y += numbers[ j + 1 ]; | |
control.x = point.x; | |
control.y = point.y; | |
if ( j === 0 ) { | |
path.moveTo( point.x, point.y ); | |
} else { | |
path.lineTo( point.x, point.y ); | |
} | |
if ( j === 0 ) firstPoint.copy( point ); | |
} | |
break; | |
case 'h': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) { | |
point.x += numbers[ j ]; | |
control.x = point.x; | |
control.y = point.y; | |
path.lineTo( point.x, point.y ); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'v': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j ++ ) { | |
point.y += numbers[ j ]; | |
control.x = point.x; | |
control.y = point.y; | |
path.lineTo( point.x, point.y ); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'l': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) { | |
point.x += numbers[ j + 0 ]; | |
point.y += numbers[ j + 1 ]; | |
control.x = point.x; | |
control.y = point.y; | |
path.lineTo( point.x, point.y ); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'c': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 6 ) { | |
path.bezierCurveTo( | |
point.x + numbers[ j + 0 ], | |
point.y + numbers[ j + 1 ], | |
point.x + numbers[ j + 2 ], | |
point.y + numbers[ j + 3 ], | |
point.x + numbers[ j + 4 ], | |
point.y + numbers[ j + 5 ] | |
); | |
control.x = point.x + numbers[ j + 2 ]; | |
control.y = point.y + numbers[ j + 3 ]; | |
point.x += numbers[ j + 4 ]; | |
point.y += numbers[ j + 5 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 's': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) { | |
path.bezierCurveTo( | |
getReflection( point.x, control.x ), | |
getReflection( point.y, control.y ), | |
point.x + numbers[ j + 0 ], | |
point.y + numbers[ j + 1 ], | |
point.x + numbers[ j + 2 ], | |
point.y + numbers[ j + 3 ] | |
); | |
control.x = point.x + numbers[ j + 0 ]; | |
control.y = point.y + numbers[ j + 1 ]; | |
point.x += numbers[ j + 2 ]; | |
point.y += numbers[ j + 3 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'q': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 4 ) { | |
path.quadraticCurveTo( | |
point.x + numbers[ j + 0 ], | |
point.y + numbers[ j + 1 ], | |
point.x + numbers[ j + 2 ], | |
point.y + numbers[ j + 3 ] | |
); | |
control.x = point.x + numbers[ j + 0 ]; | |
control.y = point.y + numbers[ j + 1 ]; | |
point.x += numbers[ j + 2 ]; | |
point.y += numbers[ j + 3 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 't': | |
numbers = parseFloats( data ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 2 ) { | |
const rx = getReflection( point.x, control.x ); | |
const ry = getReflection( point.y, control.y ); | |
path.quadraticCurveTo( | |
rx, | |
ry, | |
point.x + numbers[ j + 0 ], | |
point.y + numbers[ j + 1 ] | |
); | |
control.x = rx; | |
control.y = ry; | |
point.x = point.x + numbers[ j + 0 ]; | |
point.y = point.y + numbers[ j + 1 ]; | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'a': | |
numbers = parseFloats( data, [ 3, 4 ], 7 ); | |
for ( let j = 0, jl = numbers.length; j < jl; j += 7 ) { | |
// skip command if no displacement | |
if ( numbers[ j + 5 ] == 0 && numbers[ j + 6 ] == 0 ) continue; | |
const start = point.clone(); | |
point.x += numbers[ j + 5 ]; | |
point.y += numbers[ j + 6 ]; | |
control.x = point.x; | |
control.y = point.y; | |
parseArcCommand( | |
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point | |
); | |
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point ); | |
} | |
break; | |
case 'Z': | |
case 'z': | |
path.currentPath.autoClose = true; | |
if ( path.currentPath.curves.length > 0 ) { | |
// Reset point to beginning of Path | |
point.copy( firstPoint ); | |
path.currentPath.currentPoint.copy( point ); | |
isFirstPoint = true; | |
} | |
break; | |
default: | |
console.warn( command ); | |
} | |
// console.log( type, parseFloats( data ), parseFloats( data ).length ) | |
doSetFirstPoint = false; | |
} | |
return path; | |
} | |
function parseCSSStylesheet( node ) { | |
if ( ! node.sheet || ! node.sheet.cssRules || ! node.sheet.cssRules.length ) return; | |
for ( let i = 0; i < node.sheet.cssRules.length; i ++ ) { | |
const stylesheet = node.sheet.cssRules[ i ]; | |
if ( stylesheet.type !== 1 ) continue; | |
const selectorList = stylesheet.selectorText | |
.split( /,/gm ) | |
.filter( Boolean ) | |
.map( i => i.trim() ); | |
for ( let j = 0; j < selectorList.length; j ++ ) { | |
// Remove empty rules | |
const definitions = Object.fromEntries( | |
Object.entries( stylesheet.style ).filter( ( [ , v ] ) => v !== '' ) | |
); | |
stylesheets[ selectorList[ j ] ] = Object.assign( | |
stylesheets[ selectorList[ j ] ] || {}, | |
definitions | |
); | |
} | |
} | |
} | |
/** | |
* https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes | |
* https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion | |
* From | |
* rx ry x-axis-rotation large-arc-flag sweep-flag x y | |
* To | |
* aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation | |
*/ | |
function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) { | |
if ( rx == 0 || ry == 0 ) { | |
// draw a line if either of the radii == 0 | |
path.lineTo( end.x, end.y ); | |
return; | |
} | |
x_axis_rotation = x_axis_rotation * Math.PI / 180; | |
// Ensure radii are positive | |
rx = Math.abs( rx ); | |
ry = Math.abs( ry ); | |
// Compute (x1', y1') | |
const dx2 = ( start.x - end.x ) / 2.0; | |
const dy2 = ( start.y - end.y ) / 2.0; | |
const x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2; | |
const y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2; | |
// Compute (cx', cy') | |
let rxs = rx * rx; | |
let rys = ry * ry; | |
const x1ps = x1p * x1p; | |
const y1ps = y1p * y1p; | |
// Ensure radii are large enough | |
const cr = x1ps / rxs + y1ps / rys; | |
if ( cr > 1 ) { | |
// scale up rx,ry equally so cr == 1 | |
const s = Math.sqrt( cr ); | |
rx = s * rx; | |
ry = s * ry; | |
rxs = rx * rx; | |
rys = ry * ry; | |
} | |
const dq = ( rxs * y1ps + rys * x1ps ); | |
const pq = ( rxs * rys - dq ) / dq; | |
let q = Math.sqrt( Math.max( 0, pq ) ); | |
if ( large_arc_flag === sweep_flag ) q = - q; | |
const cxp = q * rx * y1p / ry; | |
const cyp = - q * ry * x1p / rx; | |
// Step 3: Compute (cx, cy) from (cx', cy') | |
const cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2; | |
const cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2; | |
// Step 4: Compute θ1 and Δθ | |
const theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry ); | |
const delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 ); | |
path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation ); | |
} | |
function svgAngle( ux, uy, vx, vy ) { | |
const dot = ux * vx + uy * vy; | |
const len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy ); | |
let ang = Math.acos( Math.max( - 1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear | |
if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang; | |
return ang; | |
} | |
/* | |
* According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute | |
* rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough | |
*/ | |
function parseRectNode( node ) { | |
const x = parseFloatWithUnits( node.getAttribute( 'x' ) || 0 ); | |
const y = parseFloatWithUnits( node.getAttribute( 'y' ) || 0 ); | |
const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || node.getAttribute( 'ry' ) || 0 ); | |
const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || node.getAttribute( 'rx' ) || 0 ); | |
const w = parseFloatWithUnits( node.getAttribute( 'width' ) ); | |
const h = parseFloatWithUnits( node.getAttribute( 'height' ) ); | |
// Ellipse arc to Bezier approximation Coefficient (Inversed). See: | |
// https://spencermortensen.com/articles/bezier-circle/ | |
const bci = 1 - 0.551915024494; | |
const path = new ShapePath(); | |
// top left | |
path.moveTo( x + rx, y ); | |
// top right | |
path.lineTo( x + w - rx, y ); | |
if ( rx !== 0 || ry !== 0 ) { | |
path.bezierCurveTo( | |
x + w - rx * bci, | |
y, | |
x + w, | |
y + ry * bci, | |
x + w, | |
y + ry | |
); | |
} | |
// bottom right | |
path.lineTo( x + w, y + h - ry ); | |
if ( rx !== 0 || ry !== 0 ) { | |
path.bezierCurveTo( | |
x + w, | |
y + h - ry * bci, | |
x + w - rx * bci, | |
y + h, | |
x + w - rx, | |
y + h | |
); | |
} | |
// bottom left | |
path.lineTo( x + rx, y + h ); | |
if ( rx !== 0 || ry !== 0 ) { | |
path.bezierCurveTo( | |
x + rx * bci, | |
y + h, | |
x, | |
y + h - ry * bci, | |
x, | |
y + h - ry | |
); | |
} | |
// back to top left | |
path.lineTo( x, y + ry ); | |
if ( rx !== 0 || ry !== 0 ) { | |
path.bezierCurveTo( x, y + ry * bci, x + rx * bci, y, x + rx, y ); | |
} | |
return path; | |
} | |
function parsePolygonNode( node ) { | |
function iterator( match, a, b ) { | |
const x = parseFloatWithUnits( a ); | |
const y = parseFloatWithUnits( b ); | |
if ( index === 0 ) { | |
path.moveTo( x, y ); | |
} else { | |
path.lineTo( x, y ); | |
} | |
index ++; | |
} | |
const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g; | |
const path = new ShapePath(); | |
let index = 0; | |
node.getAttribute( 'points' ).replace( regex, iterator ); | |
path.currentPath.autoClose = true; | |
return path; | |
} | |
function parsePolylineNode( node ) { | |
function iterator( match, a, b ) { | |
const x = parseFloatWithUnits( a ); | |
const y = parseFloatWithUnits( b ); | |
if ( index === 0 ) { | |
path.moveTo( x, y ); | |
} else { | |
path.lineTo( x, y ); | |
} | |
index ++; | |
} | |
const regex = /([+-]?\d*\.?\d+(?:e[+-]?\d+)?)(?:,|\s)([+-]?\d*\.?\d+(?:e[+-]?\d+)?)/g; | |
const path = new ShapePath(); | |
let index = 0; | |
node.getAttribute( 'points' ).replace( regex, iterator ); | |
path.currentPath.autoClose = false; | |
return path; | |
} | |
function parseCircleNode( node ) { | |
const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 ); | |
const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 ); | |
const r = parseFloatWithUnits( node.getAttribute( 'r' ) || 0 ); | |
const subpath = new Path(); | |
subpath.absarc( x, y, r, 0, Math.PI * 2 ); | |
const path = new ShapePath(); | |
path.subPaths.push( subpath ); | |
return path; | |
} | |
function parseEllipseNode( node ) { | |
const x = parseFloatWithUnits( node.getAttribute( 'cx' ) || 0 ); | |
const y = parseFloatWithUnits( node.getAttribute( 'cy' ) || 0 ); | |
const rx = parseFloatWithUnits( node.getAttribute( 'rx' ) || 0 ); | |
const ry = parseFloatWithUnits( node.getAttribute( 'ry' ) || 0 ); | |
const subpath = new Path(); | |
subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 ); | |
const path = new ShapePath(); | |
path.subPaths.push( subpath ); | |
return path; | |
} | |
function parseLineNode( node ) { | |
const x1 = parseFloatWithUnits( node.getAttribute( 'x1' ) || 0 ); | |
const y1 = parseFloatWithUnits( node.getAttribute( 'y1' ) || 0 ); | |
const x2 = parseFloatWithUnits( node.getAttribute( 'x2' ) || 0 ); | |
const y2 = parseFloatWithUnits( node.getAttribute( 'y2' ) || 0 ); | |
const path = new ShapePath(); | |
path.moveTo( x1, y1 ); | |
path.lineTo( x2, y2 ); | |
path.currentPath.autoClose = false; | |
return path; | |
} | |
// | |
function parseStyle( node, style ) { | |
style = Object.assign( {}, style ); // clone style | |
let stylesheetStyles = {}; | |
if ( node.hasAttribute( 'class' ) ) { | |
const classSelectors = node.getAttribute( 'class' ) | |
.split( /\s/ ) | |
.filter( Boolean ) | |
.map( i => i.trim() ); | |
for ( let i = 0; i < classSelectors.length; i ++ ) { | |
stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '.' + classSelectors[ i ] ] ); | |
} | |
} | |
if ( node.hasAttribute( 'id' ) ) { | |
stylesheetStyles = Object.assign( stylesheetStyles, stylesheets[ '#' + node.getAttribute( 'id' ) ] ); | |
} | |
function addStyle( svgName, jsName, adjustFunction ) { | |
if ( adjustFunction === undefined ) adjustFunction = function copy( v ) { | |
if ( v.startsWith( 'url' ) ) console.warn( 'SVGLoader: url access in attributes is not implemented.' ); | |
return v; | |
}; | |
if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) ); | |
if ( stylesheetStyles[ svgName ] ) style[ jsName ] = adjustFunction( stylesheetStyles[ svgName ] ); | |
if ( node.style && node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] ); | |
} | |
function clamp( v ) { | |
return Math.max( 0, Math.min( 1, parseFloatWithUnits( v ) ) ); | |
} | |
function positive( v ) { | |
return Math.max( 0, parseFloatWithUnits( v ) ); | |
} | |
addStyle( 'fill', 'fill' ); | |
addStyle( 'fill-opacity', 'fillOpacity', clamp ); | |
addStyle( 'fill-rule', 'fillRule' ); | |
addStyle( 'opacity', 'opacity', clamp ); | |
addStyle( 'stroke', 'stroke' ); | |
addStyle( 'stroke-opacity', 'strokeOpacity', clamp ); | |
addStyle( 'stroke-width', 'strokeWidth', positive ); | |
addStyle( 'stroke-linejoin', 'strokeLineJoin' ); | |
addStyle( 'stroke-linecap', 'strokeLineCap' ); | |
addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive ); | |
addStyle( 'visibility', 'visibility' ); | |
return style; | |
} | |
// http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes | |
function getReflection( a, b ) { | |
return a - ( b - a ); | |
} | |
// from https://github.com/ppvg/svg-numbers (MIT License) | |
function parseFloats( input, flags, stride ) { | |
if ( typeof input !== 'string' ) { | |
throw new TypeError( 'Invalid input: ' + typeof input ); | |
} | |
// Character groups | |
const RE = { | |
SEPARATOR: /[ \t\r\n\,.\-+]/, | |
WHITESPACE: /[ \t\r\n]/, | |
DIGIT: /[\d]/, | |
SIGN: /[-+]/, | |
POINT: /\./, | |
COMMA: /,/, | |
EXP: /e/i, | |
FLAGS: /[01]/ | |
}; | |
// States | |
const SEP = 0; | |
const INT = 1; | |
const FLOAT = 2; | |
const EXP = 3; | |
let state = SEP; | |
let seenComma = true; | |
let number = '', exponent = ''; | |
const result = []; | |
function throwSyntaxError( current, i, partial ) { | |
const error = new SyntaxError( 'Unexpected character "' + current + '" at index ' + i + '.' ); | |
error.partial = partial; | |
throw error; | |
} | |
function newNumber() { | |
if ( number !== '' ) { | |
if ( exponent === '' ) result.push( Number( number ) ); | |
else result.push( Number( number ) * Math.pow( 10, Number( exponent ) ) ); | |
} | |
number = ''; | |
exponent = ''; | |
} | |
let current; | |
const length = input.length; | |
for ( let i = 0; i < length; i ++ ) { | |
current = input[ i ]; | |
// check for flags | |
if ( Array.isArray( flags ) && flags.includes( result.length % stride ) && RE.FLAGS.test( current ) ) { | |
state = INT; | |
number = current; | |
newNumber(); | |
continue; | |
} | |
// parse until next number | |
if ( state === SEP ) { | |
// eat whitespace | |
if ( RE.WHITESPACE.test( current ) ) { | |
continue; | |
} | |
// start new number | |
if ( RE.DIGIT.test( current ) || RE.SIGN.test( current ) ) { | |
state = INT; | |
number = current; | |
continue; | |
} | |
if ( RE.POINT.test( current ) ) { | |
state = FLOAT; | |
number = current; | |
continue; | |
} | |
// throw on double commas (e.g. "1, , 2") | |
if ( RE.COMMA.test( current ) ) { | |
if ( seenComma ) { | |
throwSyntaxError( current, i, result ); | |
} | |
seenComma = true; | |
} | |
} | |
// parse integer part | |
if ( state === INT ) { | |
if ( RE.DIGIT.test( current ) ) { | |
number += current; | |
continue; | |
} | |
if ( RE.POINT.test( current ) ) { | |
number += current; | |
state = FLOAT; | |
continue; | |
} | |
if ( RE.EXP.test( current ) ) { | |
state = EXP; | |
continue; | |
} | |
// throw on double signs ("-+1"), but not on sign as separator ("-1-2") | |
if ( RE.SIGN.test( current ) | |
&& number.length === 1 | |
&& RE.SIGN.test( number[ 0 ] ) ) { | |
throwSyntaxError( current, i, result ); | |
} | |
} | |
// parse decimal part | |
if ( state === FLOAT ) { | |
if ( RE.DIGIT.test( current ) ) { | |
number += current; | |
continue; | |
} | |
if ( RE.EXP.test( current ) ) { | |
state = EXP; | |
continue; | |
} | |
// throw on double decimal points (e.g. "1..2") | |
if ( RE.POINT.test( current ) && number[ number.length - 1 ] === '.' ) { | |
throwSyntaxError( current, i, result ); | |
} | |
} | |
// parse exponent part | |
if ( state === EXP ) { | |
if ( RE.DIGIT.test( current ) ) { | |
exponent += current; | |
continue; | |
} | |
if ( RE.SIGN.test( current ) ) { | |
if ( exponent === '' ) { | |
exponent += current; | |
continue; | |
} | |
if ( exponent.length === 1 && RE.SIGN.test( exponent ) ) { | |
throwSyntaxError( current, i, result ); | |
} | |
} | |
} | |
// end of number | |
if ( RE.WHITESPACE.test( current ) ) { | |
newNumber(); | |
state = SEP; | |
seenComma = false; | |
} else if ( RE.COMMA.test( current ) ) { | |
newNumber(); | |
state = SEP; | |
seenComma = true; | |
} else if ( RE.SIGN.test( current ) ) { | |
newNumber(); | |
state = INT; | |
number = current; | |
} else if ( RE.POINT.test( current ) ) { | |
newNumber(); | |
state = FLOAT; | |
number = current; | |
} else { | |
throwSyntaxError( current, i, result ); | |
} | |
} | |
// add the last number found (if any) | |
newNumber(); | |
return result; | |
} | |
// Units | |
const units = [ 'mm', 'cm', 'in', 'pt', 'pc', 'px' ]; | |
// Conversion: [ fromUnit ][ toUnit ] (-1 means dpi dependent) | |
const unitConversion = { | |
'mm': { | |
'mm': 1, | |
'cm': 0.1, | |
'in': 1 / 25.4, | |
'pt': 72 / 25.4, | |
'pc': 6 / 25.4, | |
'px': - 1 | |
}, | |
'cm': { | |
'mm': 10, | |
'cm': 1, | |
'in': 1 / 2.54, | |
'pt': 72 / 2.54, | |
'pc': 6 / 2.54, | |
'px': - 1 | |
}, | |
'in': { | |
'mm': 25.4, | |
'cm': 2.54, | |
'in': 1, | |
'pt': 72, | |
'pc': 6, | |
'px': - 1 | |
}, | |
'pt': { | |
'mm': 25.4 / 72, | |
'cm': 2.54 / 72, | |
'in': 1 / 72, | |
'pt': 1, | |
'pc': 6 / 72, | |
'px': - 1 | |
}, | |
'pc': { | |
'mm': 25.4 / 6, | |
'cm': 2.54 / 6, | |
'in': 1 / 6, | |
'pt': 72 / 6, | |
'pc': 1, | |
'px': - 1 | |
}, | |
'px': { | |
'px': 1 | |
} | |
}; | |
function parseFloatWithUnits( string ) { | |
let theUnit = 'px'; | |
if ( typeof string === 'string' || string instanceof String ) { | |
for ( let i = 0, n = units.length; i < n; i ++ ) { | |
const u = units[ i ]; | |
if ( string.endsWith( u ) ) { | |
theUnit = u; | |
string = string.substring( 0, string.length - u.length ); | |
break; | |
} | |
} | |
} | |
let scale = undefined; | |
if ( theUnit === 'px' && scope.defaultUnit !== 'px' ) { | |
// Conversion scale from pixels to inches, then to default units | |
scale = unitConversion[ 'in' ][ scope.defaultUnit ] / scope.defaultDPI; | |
} else { | |
scale = unitConversion[ theUnit ][ scope.defaultUnit ]; | |
if ( scale < 0 ) { | |
// Conversion scale to pixels | |
scale = unitConversion[ theUnit ][ 'in' ] * scope.defaultDPI; | |
} | |
} | |
return scale * parseFloat( string ); | |
} | |
// Transforms | |
function getNodeTransform( node ) { | |
if ( ! ( node.hasAttribute( 'transform' ) || ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) ) ) { | |
return null; | |
} | |
const transform = parseNodeTransform( node ); | |
if ( transformStack.length > 0 ) { | |
transform.premultiply( transformStack[ transformStack.length - 1 ] ); | |
} | |
currentTransform.copy( transform ); | |
transformStack.push( transform ); | |
return transform; | |
} | |
function parseNodeTransform( node ) { | |
const transform = new Matrix3(); | |
const currentTransform = tempTransform0; | |
if ( node.nodeName === 'use' && ( node.hasAttribute( 'x' ) || node.hasAttribute( 'y' ) ) ) { | |
const tx = parseFloatWithUnits( node.getAttribute( 'x' ) ); | |
const ty = parseFloatWithUnits( node.getAttribute( 'y' ) ); | |
transform.translate( tx, ty ); | |
} | |
if ( node.hasAttribute( 'transform' ) ) { | |
const transformsTexts = node.getAttribute( 'transform' ).split( ')' ); | |
for ( let tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) { | |
const transformText = transformsTexts[ tIndex ].trim(); | |
if ( transformText === '' ) continue; | |
const openParPos = transformText.indexOf( '(' ); | |
const closeParPos = transformText.length; | |
if ( openParPos > 0 && openParPos < closeParPos ) { | |
const transformType = transformText.slice( 0, openParPos ); | |
const array = parseFloats( transformText.slice( openParPos + 1 ) ); | |
currentTransform.identity(); | |
switch ( transformType ) { | |
case 'translate': | |
if ( array.length >= 1 ) { | |
const tx = array[ 0 ]; | |
let ty = 0; | |
if ( array.length >= 2 ) { | |
ty = array[ 1 ]; | |
} | |
currentTransform.translate( tx, ty ); | |
} | |
break; | |
case 'rotate': | |
if ( array.length >= 1 ) { | |
let angle = 0; | |
let cx = 0; | |
let cy = 0; | |
// Angle | |
angle = array[ 0 ] * Math.PI / 180; | |
if ( array.length >= 3 ) { | |
// Center x, y | |
cx = array[ 1 ]; | |
cy = array[ 2 ]; | |
} | |
// Rotate around center (cx, cy) | |
tempTransform1.makeTranslation( - cx, - cy ); | |
tempTransform2.makeRotation( angle ); | |
tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 ); | |
tempTransform1.makeTranslation( cx, cy ); | |
currentTransform.multiplyMatrices( tempTransform1, tempTransform3 ); | |
} | |
break; | |
case 'scale': | |
if ( array.length >= 1 ) { | |
const scaleX = array[ 0 ]; | |
let scaleY = scaleX; | |
if ( array.length >= 2 ) { | |
scaleY = array[ 1 ]; | |
} | |
currentTransform.scale( scaleX, scaleY ); | |
} | |
break; | |
case 'skewX': | |
if ( array.length === 1 ) { | |
currentTransform.set( | |
1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0, | |
0, 1, 0, | |
0, 0, 1 | |
); | |
} | |
break; | |
case 'skewY': | |
if ( array.length === 1 ) { | |
currentTransform.set( | |
1, 0, 0, | |
Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0, | |
0, 0, 1 | |
); | |
} | |
break; | |
case 'matrix': | |
if ( array.length === 6 ) { | |
currentTransform.set( | |
array[ 0 ], array[ 2 ], array[ 4 ], | |
array[ 1 ], array[ 3 ], array[ 5 ], | |
0, 0, 1 | |
); | |
} | |
break; | |
} | |
} | |
transform.premultiply( currentTransform ); | |
} | |
} | |
return transform; | |
} | |
function transformPath( path, m ) { | |
function transfVec2( v2 ) { | |
tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m ); | |
v2.set( tempV3.x, tempV3.y ); | |
} | |
function transfEllipseGeneric( curve ) { | |
// For math description see: | |
// https://math.stackexchange.com/questions/4544164 | |
const a = curve.xRadius; | |
const b = curve.yRadius; | |
const cosTheta = Math.cos( curve.aRotation ); | |
const sinTheta = Math.sin( curve.aRotation ); | |
const v1 = new Vector3( a * cosTheta, a * sinTheta, 0 ); | |
const v2 = new Vector3( - b * sinTheta, b * cosTheta, 0 ); | |
const f1 = v1.applyMatrix3( m ); | |
const f2 = v2.applyMatrix3( m ); | |
const mF = tempTransform0.set( | |
f1.x, f2.x, 0, | |
f1.y, f2.y, 0, | |
0, 0, 1, | |
); | |
const mFInv = tempTransform1.copy( mF ).invert(); | |
const mFInvT = tempTransform2.copy( mFInv ).transpose(); | |
const mQ = mFInvT.multiply( mFInv ); | |
const mQe = mQ.elements; | |
const ed = eigenDecomposition( mQe[ 0 ], mQe[ 1 ], mQe[ 4 ] ); | |
const rt1sqrt = Math.sqrt( ed.rt1 ); | |
const rt2sqrt = Math.sqrt( ed.rt2 ); | |
curve.xRadius = 1 / rt1sqrt; | |
curve.yRadius = 1 / rt2sqrt; | |
curve.aRotation = Math.atan2( ed.sn, ed.cs ); | |
const isFullEllipse = | |
( curve.aEndAngle - curve.aStartAngle ) % ( 2 * Math.PI ) < Number.EPSILON; | |
// Do not touch angles of a full ellipse because after transformation they | |
// would converge to a single value effectively removing the whole curve | |
if ( ! isFullEllipse ) { | |
const mDsqrt = tempTransform1.set( | |
rt1sqrt, 0, 0, | |
0, rt2sqrt, 0, | |
0, 0, 1, | |
); | |
const mRT = tempTransform2.set( | |
ed.cs, ed.sn, 0, | |
- ed.sn, ed.cs, 0, | |
0, 0, 1, | |
); | |
const mDRF = mDsqrt.multiply( mRT ).multiply( mF ); | |
const transformAngle = phi => { | |
const { x: cosR, y: sinR } = | |
new Vector3( Math.cos( phi ), Math.sin( phi ), 0 ).applyMatrix3( mDRF ); | |
return Math.atan2( sinR, cosR ); | |
}; | |
curve.aStartAngle = transformAngle( curve.aStartAngle ); | |
curve.aEndAngle = transformAngle( curve.aEndAngle ); | |
if ( isTransformFlipped( m ) ) { | |
curve.aClockwise = ! curve.aClockwise; | |
} | |
} | |
} | |
function transfEllipseNoSkew( curve ) { | |
// Faster shortcut if no skew is applied | |
// (e.g, a euclidean transform of a group containing the ellipse) | |
const sx = getTransformScaleX( m ); | |
const sy = getTransformScaleY( m ); | |
curve.xRadius *= sx; | |
curve.yRadius *= sy; | |
// Extract rotation angle from the matrix of form: | |
// | |
// | cosθ sx -sinθ sy | | |
// | sinθ sx cosθ sy | | |
// | |
// Remembering that tanθ = sinθ / cosθ; and that | |
// `sx`, `sy`, or both might be zero. | |
const theta = | |
sx > Number.EPSILON | |
? Math.atan2( m.elements[ 1 ], m.elements[ 0 ] ) | |
: Math.atan2( - m.elements[ 3 ], m.elements[ 4 ] ); | |
curve.aRotation += theta; | |
if ( isTransformFlipped( m ) ) { | |
curve.aStartAngle *= - 1; | |
curve.aEndAngle *= - 1; | |
curve.aClockwise = ! curve.aClockwise; | |
} | |
} | |
const subPaths = path.subPaths; | |
for ( let i = 0, n = subPaths.length; i < n; i ++ ) { | |
const subPath = subPaths[ i ]; | |
const curves = subPath.curves; | |
for ( let j = 0; j < curves.length; j ++ ) { | |
const curve = curves[ j ]; | |
if ( curve.isLineCurve ) { | |
transfVec2( curve.v1 ); | |
transfVec2( curve.v2 ); | |
} else if ( curve.isCubicBezierCurve ) { | |
transfVec2( curve.v0 ); | |
transfVec2( curve.v1 ); | |
transfVec2( curve.v2 ); | |
transfVec2( curve.v3 ); | |
} else if ( curve.isQuadraticBezierCurve ) { | |
transfVec2( curve.v0 ); | |
transfVec2( curve.v1 ); | |
transfVec2( curve.v2 ); | |
} else if ( curve.isEllipseCurve ) { | |
// Transform ellipse center point | |
tempV2.set( curve.aX, curve.aY ); | |
transfVec2( tempV2 ); | |
curve.aX = tempV2.x; | |
curve.aY = tempV2.y; | |
// Transform ellipse shape parameters | |
if ( isTransformSkewed( m ) ) { | |
transfEllipseGeneric( curve ); | |
} else { | |
transfEllipseNoSkew( curve ); | |
} | |
} | |
} | |
} | |
} | |
function isTransformFlipped( m ) { | |
const te = m.elements; | |
return te[ 0 ] * te[ 4 ] - te[ 1 ] * te[ 3 ] < 0; | |
} | |
function isTransformSkewed( m ) { | |
const te = m.elements; | |
const basisDot = te[ 0 ] * te[ 3 ] + te[ 1 ] * te[ 4 ]; | |
// Shortcut for trivial rotations and transformations | |
if ( basisDot === 0 ) return false; | |
const sx = getTransformScaleX( m ); | |
const sy = getTransformScaleY( m ); | |
return Math.abs( basisDot / ( sx * sy ) ) > Number.EPSILON; | |
} | |
function getTransformScaleX( m ) { | |
const te = m.elements; | |
return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] ); | |
} | |
function getTransformScaleY( m ) { | |
const te = m.elements; | |
return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] ); | |
} | |
// Calculates the eigensystem of a real symmetric 2x2 matrix | |
// [ A B ] | |
// [ B C ] | |
// in the form | |
// [ A B ] = [ cs -sn ] [ rt1 0 ] [ cs sn ] | |
// [ B C ] [ sn cs ] [ 0 rt2 ] [ -sn cs ] | |
// where rt1 >= rt2. | |
// | |
// Adapted from: https://www.mpi-hd.mpg.de/personalhomes/globes/3x3/index.html | |
// -> Algorithms for real symmetric matrices -> Analytical (2x2 symmetric) | |
function eigenDecomposition( A, B, C ) { | |
let rt1, rt2, cs, sn, t; | |
const sm = A + C; | |
const df = A - C; | |
const rt = Math.sqrt( df * df + 4 * B * B ); | |
if ( sm > 0 ) { | |
rt1 = 0.5 * ( sm + rt ); | |
t = 1 / rt1; | |
rt2 = A * t * C - B * t * B; | |
} else if ( sm < 0 ) { | |
rt2 = 0.5 * ( sm - rt ); | |
} else { | |
// This case needs to be treated separately to avoid div by 0 | |
rt1 = 0.5 * rt; | |
rt2 = - 0.5 * rt; | |
} | |
// Calculate eigenvectors | |
if ( df > 0 ) { | |
cs = df + rt; | |
} else { | |
cs = df - rt; | |
} | |
if ( Math.abs( cs ) > 2 * Math.abs( B ) ) { | |
t = - 2 * B / cs; | |
sn = 1 / Math.sqrt( 1 + t * t ); | |
cs = t * sn; | |
} else if ( Math.abs( B ) === 0 ) { | |
cs = 1; | |
sn = 0; | |
} else { | |
t = - 0.5 * cs / B; | |
cs = 1 / Math.sqrt( 1 + t * t ); | |
sn = t * cs; | |
} | |
if ( df > 0 ) { | |
t = cs; | |
cs = - sn; | |
sn = t; | |
} | |
return { rt1, rt2, cs, sn }; | |
} | |
// | |
const paths = []; | |
const stylesheets = {}; | |
const transformStack = []; | |
const tempTransform0 = new Matrix3(); | |
const tempTransform1 = new Matrix3(); | |
const tempTransform2 = new Matrix3(); | |
const tempTransform3 = new Matrix3(); | |
const tempV2 = new Vector2(); | |
const tempV3 = new Vector3(); | |
const currentTransform = new Matrix3(); | |
const xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml | |
parseNode( xml.documentElement, { | |
fill: '#000', | |
fillOpacity: 1, | |
strokeOpacity: 1, | |
strokeWidth: 1, | |
strokeLineJoin: 'miter', | |
strokeLineCap: 'butt', | |
strokeMiterLimit: 4 | |
} ); | |
const data = { paths: paths, xml: xml.documentElement }; | |
// console.log( paths ); | |
return data; | |
} | |
static createShapes( shapePath ) { | |
// Param shapePath: a shapepath as returned by the parse function of this class | |
// Returns Shape object | |
const BIGNUMBER = 999999999; | |
const IntersectionLocationType = { | |
ORIGIN: 0, | |
DESTINATION: 1, | |
BETWEEN: 2, | |
LEFT: 3, | |
RIGHT: 4, | |
BEHIND: 5, | |
BEYOND: 6 | |
}; | |
const classifyResult = { | |
loc: IntersectionLocationType.ORIGIN, | |
t: 0 | |
}; | |
function findEdgeIntersection( a0, a1, b0, b1 ) { | |
const x1 = a0.x; | |
const x2 = a1.x; | |
const x3 = b0.x; | |
const x4 = b1.x; | |
const y1 = a0.y; | |
const y2 = a1.y; | |
const y3 = b0.y; | |
const y4 = b1.y; | |
const nom1 = ( x4 - x3 ) * ( y1 - y3 ) - ( y4 - y3 ) * ( x1 - x3 ); | |
const nom2 = ( x2 - x1 ) * ( y1 - y3 ) - ( y2 - y1 ) * ( x1 - x3 ); | |
const denom = ( y4 - y3 ) * ( x2 - x1 ) - ( x4 - x3 ) * ( y2 - y1 ); | |
const t1 = nom1 / denom; | |
const t2 = nom2 / denom; | |
if ( ( ( denom === 0 ) && ( nom1 !== 0 ) ) || ( t1 <= 0 ) || ( t1 >= 1 ) || ( t2 < 0 ) || ( t2 > 1 ) ) { | |
//1. lines are parallel or edges don't intersect | |
return null; | |
} else if ( ( nom1 === 0 ) && ( denom === 0 ) ) { | |
//2. lines are colinear | |
//check if endpoints of edge2 (b0-b1) lies on edge1 (a0-a1) | |
for ( let i = 0; i < 2; i ++ ) { | |
classifyPoint( i === 0 ? b0 : b1, a0, a1 ); | |
//find position of this endpoints relatively to edge1 | |
if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) { | |
const point = ( i === 0 ? b0 : b1 ); | |
return { x: point.x, y: point.y, t: classifyResult.t }; | |
} else if ( classifyResult.loc == IntersectionLocationType.BETWEEN ) { | |
const x = + ( ( x1 + classifyResult.t * ( x2 - x1 ) ).toPrecision( 10 ) ); | |
const y = + ( ( y1 + classifyResult.t * ( y2 - y1 ) ).toPrecision( 10 ) ); | |
return { x: x, y: y, t: classifyResult.t, }; | |
} | |
} | |
return null; | |
} else { | |
//3. edges intersect | |
for ( let i = 0; i < 2; i ++ ) { | |
classifyPoint( i === 0 ? b0 : b1, a0, a1 ); | |
if ( classifyResult.loc == IntersectionLocationType.ORIGIN ) { | |
const point = ( i === 0 ? b0 : b1 ); | |
return { x: point.x, y: point.y, t: classifyResult.t }; | |
} | |
} | |
const x = + ( ( x1 + t1 * ( x2 - x1 ) ).toPrecision( 10 ) ); | |
const y = + ( ( y1 + t1 * ( y2 - y1 ) ).toPrecision( 10 ) ); | |
return { x: x, y: y, t: t1 }; | |
} | |
} | |
function classifyPoint( p, edgeStart, edgeEnd ) { | |
const ax = edgeEnd.x - edgeStart.x; | |
const ay = edgeEnd.y - edgeStart.y; | |
const bx = p.x - edgeStart.x; | |
const by = p.y - edgeStart.y; | |
const sa = ax * by - bx * ay; | |
if ( ( p.x === edgeStart.x ) && ( p.y === edgeStart.y ) ) { | |
classifyResult.loc = IntersectionLocationType.ORIGIN; | |
classifyResult.t = 0; | |
return; | |
} | |
if ( ( p.x === edgeEnd.x ) && ( p.y === edgeEnd.y ) ) { | |
classifyResult.loc = IntersectionLocationType.DESTINATION; | |
classifyResult.t = 1; | |
return; | |
} | |
if ( sa < - Number.EPSILON ) { | |
classifyResult.loc = IntersectionLocationType.LEFT; | |
return; | |
} | |
if ( sa > Number.EPSILON ) { | |
classifyResult.loc = IntersectionLocationType.RIGHT; | |
return; | |
} | |
if ( ( ( ax * bx ) < 0 ) || ( ( ay * by ) < 0 ) ) { | |
classifyResult.loc = IntersectionLocationType.BEHIND; | |
return; | |
} | |
if ( ( Math.sqrt( ax * ax + ay * ay ) ) < ( Math.sqrt( bx * bx + by * by ) ) ) { | |
classifyResult.loc = IntersectionLocationType.BEYOND; | |
return; | |
} | |
let t; | |
if ( ax !== 0 ) { | |
t = bx / ax; | |
} else { | |
t = by / ay; | |
} | |
classifyResult.loc = IntersectionLocationType.BETWEEN; | |
classifyResult.t = t; | |
} | |
function getIntersections( path1, path2 ) { | |
const intersectionsRaw = []; | |
const intersections = []; | |
for ( let index = 1; index < path1.length; index ++ ) { | |
const path1EdgeStart = path1[ index - 1 ]; | |
const path1EdgeEnd = path1[ index ]; | |
for ( let index2 = 1; index2 < path2.length; index2 ++ ) { | |
const path2EdgeStart = path2[ index2 - 1 ]; | |
const path2EdgeEnd = path2[ index2 ]; | |
const intersection = findEdgeIntersection( path1EdgeStart, path1EdgeEnd, path2EdgeStart, path2EdgeEnd ); | |
if ( intersection !== null && intersectionsRaw.find( i => i.t <= intersection.t + Number.EPSILON && i.t >= intersection.t - Number.EPSILON ) === undefined ) { | |
intersectionsRaw.push( intersection ); | |
intersections.push( new Vector2( intersection.x, intersection.y ) ); | |
} | |
} | |
} | |
return intersections; | |
} | |
function getScanlineIntersections( scanline, boundingBox, paths ) { | |
const center = new Vector2(); | |
boundingBox.getCenter( center ); | |
const allIntersections = []; | |
paths.forEach( path => { | |
// check if the center of the bounding box is in the bounding box of the paths. | |
// this is a pruning method to limit the search of intersections in paths that can't envelop of the current path. | |
// if a path envelops another path. The center of that other path, has to be inside the bounding box of the enveloping path. | |
if ( path.boundingBox.containsPoint( center ) ) { | |
const intersections = getIntersections( scanline, path.points ); | |
intersections.forEach( p => { | |
allIntersections.push( { identifier: path.identifier, isCW: path.isCW, point: p } ); | |
} ); | |
} | |
} ); | |
allIntersections.sort( ( i1, i2 ) => { | |
return i1.point.x - i2.point.x; | |
} ); | |
return allIntersections; | |
} | |
function isHoleTo( simplePath, allPaths, scanlineMinX, scanlineMaxX, _fillRule ) { | |
if ( _fillRule === null || _fillRule === undefined || _fillRule === '' ) { | |
_fillRule = 'nonzero'; | |
} | |
const centerBoundingBox = new Vector2(); | |
simplePath.boundingBox.getCenter( centerBoundingBox ); | |
const scanline = [ new Vector2( scanlineMinX, centerBoundingBox.y ), new Vector2( scanlineMaxX, centerBoundingBox.y ) ]; | |
const scanlineIntersections = getScanlineIntersections( scanline, simplePath.boundingBox, allPaths ); | |
scanlineIntersections.sort( ( i1, i2 ) => { | |
return i1.point.x - i2.point.x; | |
} ); | |
const baseIntersections = []; | |
const otherIntersections = []; | |
scanlineIntersections.forEach( i => { | |
if ( i.identifier === simplePath.identifier ) { | |
baseIntersections.push( i ); | |
} else { | |
otherIntersections.push( i ); | |
} | |
} ); | |
const firstXOfPath = baseIntersections[ 0 ].point.x; | |
// build up the path hierarchy | |
const stack = []; | |
let i = 0; | |
while ( i < otherIntersections.length && otherIntersections[ i ].point.x < firstXOfPath ) { | |
if ( stack.length > 0 && stack[ stack.length - 1 ] === otherIntersections[ i ].identifier ) { | |
stack.pop(); | |
} else { | |
stack.push( otherIntersections[ i ].identifier ); | |
} | |
i ++; | |
} | |
stack.push( simplePath.identifier ); | |
if ( _fillRule === 'evenodd' ) { | |
const isHole = stack.length % 2 === 0 ? true : false; | |
const isHoleFor = stack[ stack.length - 2 ]; | |
return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor }; | |
} else if ( _fillRule === 'nonzero' ) { | |
// check if path is a hole by counting the amount of paths with alternating rotations it has to cross. | |
let isHole = true; | |
let isHoleFor = null; | |
let lastCWValue = null; | |
for ( let i = 0; i < stack.length; i ++ ) { | |
const identifier = stack[ i ]; | |
if ( isHole ) { | |
lastCWValue = allPaths[ identifier ].isCW; | |
isHole = false; | |
isHoleFor = identifier; | |
} else if ( lastCWValue !== allPaths[ identifier ].isCW ) { | |
lastCWValue = allPaths[ identifier ].isCW; | |
isHole = true; | |
} | |
} | |
return { identifier: simplePath.identifier, isHole: isHole, for: isHoleFor }; | |
} else { | |
console.warn( 'fill-rule: "' + _fillRule + '" is currently not implemented.' ); | |
} | |
} | |
// check for self intersecting paths | |
// TODO | |
// check intersecting paths | |
// TODO | |
// prepare paths for hole detection | |
let scanlineMinX = BIGNUMBER; | |
let scanlineMaxX = - BIGNUMBER; | |
let simplePaths = shapePath.subPaths.map( p => { | |
const points = p.getPoints(); | |
let maxY = - BIGNUMBER; | |
let minY = BIGNUMBER; | |
let maxX = - BIGNUMBER; | |
let minX = BIGNUMBER; | |
//points.forEach(p => p.y *= -1); | |
for ( let i = 0; i < points.length; i ++ ) { | |
const p = points[ i ]; | |
if ( p.y > maxY ) { | |
maxY = p.y; | |
} | |
if ( p.y < minY ) { | |
minY = p.y; | |
} | |
if ( p.x > maxX ) { | |
maxX = p.x; | |
} | |
if ( p.x < minX ) { | |
minX = p.x; | |
} | |
} | |
// | |
if ( scanlineMaxX <= maxX ) { | |
scanlineMaxX = maxX + 1; | |
} | |
if ( scanlineMinX >= minX ) { | |
scanlineMinX = minX - 1; | |
} | |
return { curves: p.curves, points: points, isCW: ShapeUtils.isClockWise( points ), identifier: - 1, boundingBox: new Box2( new Vector2( minX, minY ), new Vector2( maxX, maxY ) ) }; | |
} ); | |
simplePaths = simplePaths.filter( sp => sp.points.length > 1 ); | |
for ( let identifier = 0; identifier < simplePaths.length; identifier ++ ) { | |
simplePaths[ identifier ].identifier = identifier; | |
} | |
// check if path is solid or a hole | |
const isAHole = simplePaths.map( p => isHoleTo( p, simplePaths, scanlineMinX, scanlineMaxX, ( shapePath.userData ? shapePath.userData.style.fillRule : undefined ) ) ); | |
const shapesToReturn = []; | |
simplePaths.forEach( p => { | |
const amIAHole = isAHole[ p.identifier ]; | |
if ( ! amIAHole.isHole ) { | |
const shape = new Shape(); | |
shape.curves = p.curves; | |
const holes = isAHole.filter( h => h.isHole && h.for === p.identifier ); | |
holes.forEach( h => { | |
const hole = simplePaths[ h.identifier ]; | |
const path = new Path(); | |
path.curves = hole.curves; | |
shape.holes.push( path ); | |
} ); | |
shapesToReturn.push( shape ); | |
} | |
} ); | |
return shapesToReturn; | |
} | |
static getStrokeStyle( width, color, lineJoin, lineCap, miterLimit ) { | |
// Param width: Stroke width | |
// Param color: As returned by THREE.Color.getStyle() | |
// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit" | |
// Param lineCap: One of "round", "square" or "butt" | |
// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance) | |
// Returns style object | |
width = width !== undefined ? width : 1; | |
color = color !== undefined ? color : '#000'; | |
lineJoin = lineJoin !== undefined ? lineJoin : 'miter'; | |
lineCap = lineCap !== undefined ? lineCap : 'butt'; | |
miterLimit = miterLimit !== undefined ? miterLimit : 4; | |
return { | |
strokeColor: color, | |
strokeWidth: width, | |
strokeLineJoin: lineJoin, | |
strokeLineCap: lineCap, | |
strokeMiterLimit: miterLimit | |
}; | |
} | |
static pointsToStroke( points, style, arcDivisions, minDistance ) { | |
// Generates a stroke with some width around the given path. | |
// The path can be open or closed (last point equals to first point) | |
// Param points: Array of Vector2D (the path). Minimum 2 points. | |
// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object | |
// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional) | |
// Param minDistance: Points closer to this distance will be merged. (Optional) | |
// Returns BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right) | |
const vertices = []; | |
const normals = []; | |
const uvs = []; | |
if ( SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) { | |
return null; | |
} | |
const geometry = new BufferGeometry(); | |
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); | |
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); | |
geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); | |
return geometry; | |
} | |
static pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) { | |
// This function can be called to update existing arrays or buffers. | |
// Accepts same parameters as pointsToStroke, plus the buffers and optional offset. | |
// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs) | |
// Returns number of written vertices / normals / uvs pairs | |
// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers) | |
// 'normals' and 'uvs' buffers are optional | |
const tempV2_1 = new Vector2(); | |
const tempV2_2 = new Vector2(); | |
const tempV2_3 = new Vector2(); | |
const tempV2_4 = new Vector2(); | |
const tempV2_5 = new Vector2(); | |
const tempV2_6 = new Vector2(); | |
const tempV2_7 = new Vector2(); | |
const lastPointL = new Vector2(); | |
const lastPointR = new Vector2(); | |
const point0L = new Vector2(); | |
const point0R = new Vector2(); | |
const currentPointL = new Vector2(); | |
const currentPointR = new Vector2(); | |
const nextPointL = new Vector2(); | |
const nextPointR = new Vector2(); | |
const innerPoint = new Vector2(); | |
const outerPoint = new Vector2(); | |
arcDivisions = arcDivisions !== undefined ? arcDivisions : 12; | |
minDistance = minDistance !== undefined ? minDistance : 0.001; | |
vertexOffset = vertexOffset !== undefined ? vertexOffset : 0; | |
// First ensure there are no duplicated points | |
points = removeDuplicatedPoints( points ); | |
const numPoints = points.length; | |
if ( numPoints < 2 ) return 0; | |
const isClosed = points[ 0 ].equals( points[ numPoints - 1 ] ); | |
let currentPoint; | |
let previousPoint = points[ 0 ]; | |
let nextPoint; | |
const strokeWidth2 = style.strokeWidth / 2; | |
const deltaU = 1 / ( numPoints - 1 ); | |
let u0 = 0, u1; | |
let innerSideModified; | |
let joinIsOnLeftSide; | |
let isMiter; | |
let initialJoinIsOnLeftSide = false; | |
let numVertices = 0; | |
let currentCoordinate = vertexOffset * 3; | |
let currentCoordinateUV = vertexOffset * 2; | |
// Get initial left and right stroke points | |
getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 ); | |
lastPointL.copy( points[ 0 ] ).sub( tempV2_1 ); | |
lastPointR.copy( points[ 0 ] ).add( tempV2_1 ); | |
point0L.copy( lastPointL ); | |
point0R.copy( lastPointR ); | |
for ( let iPoint = 1; iPoint < numPoints; iPoint ++ ) { | |
currentPoint = points[ iPoint ]; | |
// Get next point | |
if ( iPoint === numPoints - 1 ) { | |
if ( isClosed ) { | |
// Skip duplicated initial point | |
nextPoint = points[ 1 ]; | |
} else nextPoint = undefined; | |
} else { | |
nextPoint = points[ iPoint + 1 ]; | |
} | |
// Normal of previous segment in tempV2_1 | |
const normal1 = tempV2_1; | |
getNormal( previousPoint, currentPoint, normal1 ); | |
tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 ); | |
currentPointL.copy( currentPoint ).sub( tempV2_3 ); | |
currentPointR.copy( currentPoint ).add( tempV2_3 ); | |
u1 = u0 + deltaU; | |
innerSideModified = false; | |
if ( nextPoint !== undefined ) { | |
// Normal of next segment in tempV2_2 | |
getNormal( currentPoint, nextPoint, tempV2_2 ); | |
tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 ); | |
nextPointL.copy( currentPoint ).sub( tempV2_3 ); | |
nextPointR.copy( currentPoint ).add( tempV2_3 ); | |
joinIsOnLeftSide = true; | |
tempV2_3.subVectors( nextPoint, previousPoint ); | |
if ( normal1.dot( tempV2_3 ) < 0 ) { | |
joinIsOnLeftSide = false; | |
} | |
if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide; | |
tempV2_3.subVectors( nextPoint, currentPoint ); | |
tempV2_3.normalize(); | |
const dot = Math.abs( normal1.dot( tempV2_3 ) ); | |
// If path is straight, don't create join | |
if ( dot > Number.EPSILON ) { | |
// Compute inner and outer segment intersections | |
const miterSide = strokeWidth2 / dot; | |
tempV2_3.multiplyScalar( - miterSide ); | |
tempV2_4.subVectors( currentPoint, previousPoint ); | |
tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 ); | |
innerPoint.copy( tempV2_5 ).negate(); | |
const miterLength2 = tempV2_5.length(); | |
const segmentLengthPrev = tempV2_4.length(); | |
tempV2_4.divideScalar( segmentLengthPrev ); | |
tempV2_6.subVectors( nextPoint, currentPoint ); | |
const segmentLengthNext = tempV2_6.length(); | |
tempV2_6.divideScalar( segmentLengthNext ); | |
// Check that previous and next segments doesn't overlap with the innerPoint of intersection | |
if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) { | |
innerSideModified = true; | |
} | |
outerPoint.copy( tempV2_5 ).add( currentPoint ); | |
innerPoint.add( currentPoint ); | |
isMiter = false; | |
if ( innerSideModified ) { | |
if ( joinIsOnLeftSide ) { | |
nextPointR.copy( innerPoint ); | |
currentPointR.copy( innerPoint ); | |
} else { | |
nextPointL.copy( innerPoint ); | |
currentPointL.copy( innerPoint ); | |
} | |
} else { | |
// The segment triangles are generated here if there was overlapping | |
makeSegmentTriangles(); | |
} | |
switch ( style.strokeLineJoin ) { | |
case 'bevel': | |
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 ); | |
break; | |
case 'round': | |
// Segment triangles | |
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ); | |
// Join triangles | |
if ( joinIsOnLeftSide ) { | |
makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 ); | |
} else { | |
makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 ); | |
} | |
break; | |
case 'miter': | |
case 'miter-clip': | |
default: | |
const miterFraction = ( strokeWidth2 * style.strokeMiterLimit ) / miterLength2; | |
if ( miterFraction < 1 ) { | |
// The join miter length exceeds the miter limit | |
if ( style.strokeLineJoin !== 'miter-clip' ) { | |
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 ); | |
break; | |
} else { | |
// Segment triangles | |
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ); | |
// Miter-clip join triangles | |
if ( joinIsOnLeftSide ) { | |
tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL ); | |
tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL ); | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( tempV2_6, u1, 0 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( tempV2_6, u1, 0 ); | |
addVertex( tempV2_7, u1, 0 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( tempV2_7, u1, 0 ); | |
addVertex( nextPointL, u1, 0 ); | |
} else { | |
tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR ); | |
tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR ); | |
addVertex( currentPointR, u1, 1 ); | |
addVertex( tempV2_6, u1, 1 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( tempV2_6, u1, 1 ); | |
addVertex( tempV2_7, u1, 1 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( tempV2_7, u1, 1 ); | |
addVertex( nextPointR, u1, 1 ); | |
} | |
} | |
} else { | |
// Miter join segment triangles | |
if ( innerSideModified ) { | |
// Optimized segment + join triangles | |
if ( joinIsOnLeftSide ) { | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( outerPoint, u1, 0 ); | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( outerPoint, u1, 0 ); | |
addVertex( innerPoint, u1, 1 ); | |
} else { | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( outerPoint, u1, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( innerPoint, u1, 0 ); | |
addVertex( outerPoint, u1, 1 ); | |
} | |
if ( joinIsOnLeftSide ) { | |
nextPointL.copy( outerPoint ); | |
} else { | |
nextPointR.copy( outerPoint ); | |
} | |
} else { | |
// Add extra miter join triangles | |
if ( joinIsOnLeftSide ) { | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( outerPoint, u1, 0 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( outerPoint, u1, 0 ); | |
addVertex( nextPointL, u1, 0 ); | |
} else { | |
addVertex( currentPointR, u1, 1 ); | |
addVertex( outerPoint, u1, 1 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( outerPoint, u1, 1 ); | |
addVertex( nextPointR, u1, 1 ); | |
} | |
} | |
isMiter = true; | |
} | |
break; | |
} | |
} else { | |
// The segment triangles are generated here when two consecutive points are collinear | |
makeSegmentTriangles(); | |
} | |
} else { | |
// The segment triangles are generated here if it is the ending segment | |
makeSegmentTriangles(); | |
} | |
if ( ! isClosed && iPoint === numPoints - 1 ) { | |
// Start line endcap | |
addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 ); | |
} | |
// Increment loop variables | |
u0 = u1; | |
previousPoint = currentPoint; | |
lastPointL.copy( nextPointL ); | |
lastPointR.copy( nextPointR ); | |
} | |
if ( ! isClosed ) { | |
// Ending line endcap | |
addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 ); | |
} else if ( innerSideModified && vertices ) { | |
// Modify path first segment vertices to adjust to the segments inner and outer intersections | |
let lastOuter = outerPoint; | |
let lastInner = innerPoint; | |
if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide ) { | |
lastOuter = innerPoint; | |
lastInner = outerPoint; | |
} | |
if ( joinIsOnLeftSide ) { | |
if ( isMiter || initialJoinIsOnLeftSide ) { | |
lastInner.toArray( vertices, 0 * 3 ); | |
lastInner.toArray( vertices, 3 * 3 ); | |
if ( isMiter ) { | |
lastOuter.toArray( vertices, 1 * 3 ); | |
} | |
} | |
} else { | |
if ( isMiter || ! initialJoinIsOnLeftSide ) { | |
lastInner.toArray( vertices, 1 * 3 ); | |
lastInner.toArray( vertices, 3 * 3 ); | |
if ( isMiter ) { | |
lastOuter.toArray( vertices, 0 * 3 ); | |
} | |
} | |
} | |
} | |
return numVertices; | |
// -- End of algorithm | |
// -- Functions | |
function getNormal( p1, p2, result ) { | |
result.subVectors( p2, p1 ); | |
return result.set( - result.y, result.x ).normalize(); | |
} | |
function addVertex( position, u, v ) { | |
if ( vertices ) { | |
vertices[ currentCoordinate ] = position.x; | |
vertices[ currentCoordinate + 1 ] = position.y; | |
vertices[ currentCoordinate + 2 ] = 0; | |
if ( normals ) { | |
normals[ currentCoordinate ] = 0; | |
normals[ currentCoordinate + 1 ] = 0; | |
normals[ currentCoordinate + 2 ] = 1; | |
} | |
currentCoordinate += 3; | |
if ( uvs ) { | |
uvs[ currentCoordinateUV ] = u; | |
uvs[ currentCoordinateUV + 1 ] = v; | |
currentCoordinateUV += 2; | |
} | |
} | |
numVertices += 3; | |
} | |
function makeCircularSector( center, p1, p2, u, v ) { | |
// param p1, p2: Points in the circle arc. | |
// p1 and p2 are in clockwise direction. | |
tempV2_1.copy( p1 ).sub( center ).normalize(); | |
tempV2_2.copy( p2 ).sub( center ).normalize(); | |
let angle = Math.PI; | |
const dot = tempV2_1.dot( tempV2_2 ); | |
if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) ); | |
angle /= arcDivisions; | |
tempV2_3.copy( p1 ); | |
for ( let i = 0, il = arcDivisions - 1; i < il; i ++ ) { | |
tempV2_4.copy( tempV2_3 ).rotateAround( center, angle ); | |
addVertex( tempV2_3, u, v ); | |
addVertex( tempV2_4, u, v ); | |
addVertex( center, u, 0.5 ); | |
tempV2_3.copy( tempV2_4 ); | |
} | |
addVertex( tempV2_4, u, v ); | |
addVertex( p2, u, v ); | |
addVertex( center, u, 0.5 ); | |
} | |
function makeSegmentTriangles() { | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( currentPointR, u1, 1 ); | |
} | |
function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) { | |
if ( innerSideModified ) { | |
// Optimized segment + bevel triangles | |
if ( joinIsOnLeftSide ) { | |
// Path segments triangles | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( innerPoint, u1, 1 ); | |
// Bevel join triangle | |
addVertex( currentPointL, u, 0 ); | |
addVertex( nextPointL, u, 0 ); | |
addVertex( innerPoint, u, 0.5 ); | |
} else { | |
// Path segments triangles | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( currentPointR, u1, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( innerPoint, u1, 0 ); | |
addVertex( currentPointR, u1, 1 ); | |
// Bevel join triangle | |
addVertex( currentPointR, u, 1 ); | |
addVertex( innerPoint, u, 0 ); | |
addVertex( nextPointR, u, 1 ); | |
} | |
} else { | |
// Bevel join triangle. The segment triangles are done in the main loop | |
if ( joinIsOnLeftSide ) { | |
addVertex( currentPointL, u, 0 ); | |
addVertex( nextPointL, u, 0 ); | |
addVertex( currentPoint, u, 0.5 ); | |
} else { | |
addVertex( currentPointR, u, 1 ); | |
addVertex( nextPointR, u, 0 ); | |
addVertex( currentPoint, u, 0.5 ); | |
} | |
} | |
} | |
function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) { | |
if ( innerSideModified ) { | |
if ( joinIsOnLeftSide ) { | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( currentPointL, u1, 0 ); | |
addVertex( innerPoint, u1, 1 ); | |
addVertex( currentPointL, u0, 0 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( innerPoint, u1, 1 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( nextPointL, u0, 0 ); | |
addVertex( innerPoint, u1, 1 ); | |
} else { | |
addVertex( lastPointR, u0, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( currentPointR, u1, 1 ); | |
addVertex( lastPointL, u0, 0 ); | |
addVertex( innerPoint, u1, 0 ); | |
addVertex( currentPointR, u1, 1 ); | |
addVertex( currentPointR, u0, 1 ); | |
addVertex( innerPoint, u1, 0 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( currentPoint, u1, 0.5 ); | |
addVertex( innerPoint, u1, 0 ); | |
addVertex( nextPointR, u0, 1 ); | |
} | |
} | |
} | |
function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) { | |
// param center: End point of the path | |
// param p1, p2: Left and right cap points | |
switch ( style.strokeLineCap ) { | |
case 'round': | |
if ( start ) { | |
makeCircularSector( center, p2, p1, u, 0.5 ); | |
} else { | |
makeCircularSector( center, p1, p2, u, 0.5 ); | |
} | |
break; | |
case 'square': | |
if ( start ) { | |
tempV2_1.subVectors( p1, center ); | |
tempV2_2.set( tempV2_1.y, - tempV2_1.x ); | |
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center ); | |
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center ); | |
// Modify already existing vertices | |
if ( joinIsOnLeftSide ) { | |
tempV2_3.toArray( vertices, 1 * 3 ); | |
tempV2_4.toArray( vertices, 0 * 3 ); | |
tempV2_4.toArray( vertices, 3 * 3 ); | |
} else { | |
tempV2_3.toArray( vertices, 1 * 3 ); | |
// using tempV2_4 to update 3rd vertex if the uv.y of 3rd vertex is 1 | |
uvs[ 3 * 2 + 1 ] === 1 ? tempV2_4.toArray( vertices, 3 * 3 ) : tempV2_3.toArray( vertices, 3 * 3 ); | |
tempV2_4.toArray( vertices, 0 * 3 ); | |
} | |
} else { | |
tempV2_1.subVectors( p2, center ); | |
tempV2_2.set( tempV2_1.y, - tempV2_1.x ); | |
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center ); | |
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center ); | |
const vl = vertices.length; | |
// Modify already existing vertices | |
if ( joinIsOnLeftSide ) { | |
tempV2_3.toArray( vertices, vl - 1 * 3 ); | |
tempV2_4.toArray( vertices, vl - 2 * 3 ); | |
tempV2_4.toArray( vertices, vl - 4 * 3 ); | |
} else { | |
tempV2_4.toArray( vertices, vl - 2 * 3 ); | |
tempV2_3.toArray( vertices, vl - 1 * 3 ); | |
tempV2_4.toArray( vertices, vl - 4 * 3 ); | |
} | |
} | |
break; | |
case 'butt': | |
default: | |
// Nothing to do here | |
break; | |
} | |
} | |
function removeDuplicatedPoints( points ) { | |
// Creates a new array if necessary with duplicated points removed. | |
// This does not remove duplicated initial and ending points of a closed path. | |
let dupPoints = false; | |
for ( let i = 1, n = points.length - 1; i < n; i ++ ) { | |
if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) { | |
dupPoints = true; | |
break; | |
} | |
} | |
if ( ! dupPoints ) return points; | |
const newPoints = []; | |
newPoints.push( points[ 0 ] ); | |
for ( let i = 1, n = points.length - 1; i < n; i ++ ) { | |
if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) { | |
newPoints.push( points[ i ] ); | |
} | |
} | |
newPoints.push( points[ points.length - 1 ] ); | |
return newPoints; | |
} | |
} | |
} | |
export { SVGLoader }; | |