Spaces:
Running
Running
import { | |
BufferAttribute, | |
BufferGeometry, | |
ClampToEdgeWrapping, | |
FileLoader, | |
Group, | |
NoColorSpace, | |
Loader, | |
Mesh, | |
MeshPhysicalMaterial, | |
MirroredRepeatWrapping, | |
RepeatWrapping, | |
SRGBColorSpace, | |
TextureLoader, | |
Object3D, | |
Vector2 | |
} from 'three'; | |
import * as fflate from '../libs/fflate.module.js'; | |
class USDAParser { | |
parse( text ) { | |
const data = {}; | |
const lines = text.split( '\n' ); | |
let string = null; | |
let target = data; | |
const stack = [ data ]; | |
// debugger; | |
for ( const line of lines ) { | |
// console.log( line ); | |
if ( line.includes( '=' ) ) { | |
const assignment = line.split( '=' ); | |
const lhs = assignment[ 0 ].trim(); | |
const rhs = assignment[ 1 ].trim(); | |
if ( rhs.endsWith( '{' ) ) { | |
const group = {}; | |
stack.push( group ); | |
target[ lhs ] = group; | |
target = group; | |
} else if ( rhs.endsWith( '(' ) ) { | |
// see #28631 | |
const values = rhs.slice( 0, - 1 ); | |
target[ lhs ] = values; | |
const meta = {}; | |
stack.push( meta ); | |
target = meta; | |
} else { | |
target[ lhs ] = rhs; | |
} | |
} else if ( line.endsWith( '{' ) ) { | |
const group = target[ string ] || {}; | |
stack.push( group ); | |
target[ string ] = group; | |
target = group; | |
} else if ( line.endsWith( '}' ) ) { | |
stack.pop(); | |
if ( stack.length === 0 ) continue; | |
target = stack[ stack.length - 1 ]; | |
} else if ( line.endsWith( '(' ) ) { | |
const meta = {}; | |
stack.push( meta ); | |
string = line.split( '(' )[ 0 ].trim() || string; | |
target[ string ] = meta; | |
target = meta; | |
} else if ( line.endsWith( ')' ) ) { | |
stack.pop(); | |
target = stack[ stack.length - 1 ]; | |
} else { | |
string = line.trim(); | |
} | |
} | |
return data; | |
} | |
} | |
class USDZLoader extends Loader { | |
constructor( manager ) { | |
super( manager ); | |
} | |
load( url, onLoad, onProgress, onError ) { | |
const scope = this; | |
const loader = new FileLoader( scope.manager ); | |
loader.setPath( scope.path ); | |
loader.setResponseType( 'arraybuffer' ); | |
loader.setRequestHeader( scope.requestHeader ); | |
loader.setWithCredentials( scope.withCredentials ); | |
loader.load( url, function ( text ) { | |
try { | |
onLoad( scope.parse( text ) ); | |
} catch ( e ) { | |
if ( onError ) { | |
onError( e ); | |
} else { | |
console.error( e ); | |
} | |
scope.manager.itemError( url ); | |
} | |
}, onProgress, onError ); | |
} | |
parse( buffer ) { | |
const parser = new USDAParser(); | |
function parseAssets( zip ) { | |
const data = {}; | |
const loader = new FileLoader(); | |
loader.setResponseType( 'arraybuffer' ); | |
for ( const filename in zip ) { | |
if ( filename.endsWith( 'png' ) ) { | |
const blob = new Blob( [ zip[ filename ] ], { type: { type: 'image/png' } } ); | |
data[ filename ] = URL.createObjectURL( blob ); | |
} | |
if ( filename.endsWith( 'usd' ) || filename.endsWith( 'usda' ) ) { | |
if ( isCrateFile( zip[ filename ] ) ) { | |
throw Error( 'THREE.USDZLoader: Crate files (.usdc or binary .usd) are not supported.' ); | |
} | |
const text = fflate.strFromU8( zip[ filename ] ); | |
data[ filename ] = parser.parse( text ); | |
} | |
} | |
return data; | |
} | |
function isCrateFile( buffer ) { | |
// Check if this a crate file. First 7 bytes of a crate file are "PXR-USDC". | |
const fileHeader = buffer.slice( 0, 7 ); | |
const crateHeader = new Uint8Array( [ 0x50, 0x58, 0x52, 0x2D, 0x55, 0x53, 0x44, 0x43 ] ); | |
// If this is not a crate file, we assume it is a plain USDA file. | |
return fileHeader.every( ( value, index ) => value === crateHeader[ index ] ); | |
} | |
function findUSD( zip ) { | |
if ( zip.length < 1 ) return undefined; | |
const firstFileName = Object.keys( zip )[ 0 ]; | |
let isCrate = false; | |
// As per the USD specification, the first entry in the zip archive is used as the main file ("UsdStage"). | |
// ASCII files can end in either .usda or .usd. | |
// See https://openusd.org/release/spec_usdz.html#layout | |
if ( firstFileName.endsWith( 'usda' ) ) return zip[ firstFileName ]; | |
if ( firstFileName.endsWith( 'usdc' ) ) { | |
isCrate = true; | |
} else if ( firstFileName.endsWith( 'usd' ) ) { | |
// If this is not a crate file, we assume it is a plain USDA file. | |
if ( ! isCrateFile( zip[ firstFileName ] ) ) { | |
return zip[ firstFileName ]; | |
} else { | |
isCrate = true; | |
} | |
} | |
if ( isCrate ) { | |
throw Error( 'THREE.USDZLoader: Crate files (.usdc or binary .usd) are not supported.' ); | |
} | |
} | |
const zip = fflate.unzipSync( new Uint8Array( buffer ) ); | |
// console.log( zip ); | |
const assets = parseAssets( zip ); | |
// console.log( assets ) | |
const file = findUSD( zip ); | |
// Parse file | |
const text = fflate.strFromU8( file ); | |
const root = parser.parse( text ); | |
// Build scene | |
function findMeshGeometry( data ) { | |
if ( ! data ) return undefined; | |
if ( 'prepend references' in data ) { | |
const reference = data[ 'prepend references' ]; | |
const parts = reference.split( '@' ); | |
const path = parts[ 1 ].replace( /^.\//, '' ); | |
const id = parts[ 2 ].replace( /^<\//, '' ).replace( />$/, '' ); | |
return findGeometry( assets[ path ], id ); | |
} | |
return findGeometry( data ); | |
} | |
function findGeometry( data, id ) { | |
if ( ! data ) return undefined; | |
if ( id !== undefined ) { | |
const def = `def Mesh "${id}"`; | |
if ( def in data ) { | |
return data[ def ]; | |
} | |
} | |
for ( const name in data ) { | |
const object = data[ name ]; | |
if ( name.startsWith( 'def Mesh' ) ) { | |
return object; | |
} | |
if ( typeof object === 'object' ) { | |
const geometry = findGeometry( object ); | |
if ( geometry ) return geometry; | |
} | |
} | |
} | |
function buildGeometry( data ) { | |
if ( ! data ) return undefined; | |
const geometry = new BufferGeometry(); | |
let indices = null; | |
let counts = null; | |
let uvs = null; | |
let positionsLength = - 1; | |
// index | |
if ( 'int[] faceVertexIndices' in data ) { | |
indices = JSON.parse( data[ 'int[] faceVertexIndices' ] ); | |
} | |
// face count | |
if ( 'int[] faceVertexCounts' in data ) { | |
counts = JSON.parse( data[ 'int[] faceVertexCounts' ] ); | |
indices = toTriangleIndices( indices, counts ); | |
} | |
// position | |
if ( 'point3f[] points' in data ) { | |
const positions = JSON.parse( data[ 'point3f[] points' ].replace( /[()]*/g, '' ) ); | |
positionsLength = positions.length; | |
let attribute = new BufferAttribute( new Float32Array( positions ), 3 ); | |
if ( indices !== null ) attribute = toFlatBufferAttribute( attribute, indices ); | |
geometry.setAttribute( 'position', attribute ); | |
} | |
// uv | |
if ( 'float2[] primvars:st' in data ) { | |
data[ 'texCoord2f[] primvars:st' ] = data[ 'float2[] primvars:st' ]; | |
} | |
if ( 'texCoord2f[] primvars:st' in data ) { | |
uvs = JSON.parse( data[ 'texCoord2f[] primvars:st' ].replace( /[()]*/g, '' ) ); | |
let attribute = new BufferAttribute( new Float32Array( uvs ), 2 ); | |
if ( indices !== null ) attribute = toFlatBufferAttribute( attribute, indices ); | |
geometry.setAttribute( 'uv', attribute ); | |
} | |
if ( 'int[] primvars:st:indices' in data && uvs !== null ) { | |
// custom uv index, overwrite uvs with new data | |
const attribute = new BufferAttribute( new Float32Array( uvs ), 2 ); | |
let indices = JSON.parse( data[ 'int[] primvars:st:indices' ] ); | |
indices = toTriangleIndices( indices, counts ); | |
geometry.setAttribute( 'uv', toFlatBufferAttribute( attribute, indices ) ); | |
} | |
// normal | |
if ( 'normal3f[] normals' in data ) { | |
const normals = JSON.parse( data[ 'normal3f[] normals' ].replace( /[()]*/g, '' ) ); | |
let attribute = new BufferAttribute( new Float32Array( normals ), 3 ); | |
// normals require a special treatment in USD | |
if ( normals.length === positionsLength ) { | |
// raw normal and position data have equal length (like produced by USDZExporter) | |
if ( indices !== null ) attribute = toFlatBufferAttribute( attribute, indices ); | |
} else { | |
// unequal length, normals are independent of faceVertexIndices | |
let indices = Array.from( Array( normals.length / 3 ).keys() ); // [ 0, 1, 2, 3 ... ] | |
indices = toTriangleIndices( indices, counts ); | |
attribute = toFlatBufferAttribute( attribute, indices ); | |
} | |
geometry.setAttribute( 'normal', attribute ); | |
} else { | |
// compute flat vertex normals | |
geometry.computeVertexNormals(); | |
} | |
return geometry; | |
} | |
function toTriangleIndices( rawIndices, counts ) { | |
const indices = []; | |
for ( let i = 0; i < counts.length; i ++ ) { | |
const count = counts[ i ]; | |
const stride = i * count; | |
if ( count === 3 ) { | |
const a = rawIndices[ stride + 0 ]; | |
const b = rawIndices[ stride + 1 ]; | |
const c = rawIndices[ stride + 2 ]; | |
indices.push( a, b, c ); | |
} else if ( count === 4 ) { | |
const a = rawIndices[ stride + 0 ]; | |
const b = rawIndices[ stride + 1 ]; | |
const c = rawIndices[ stride + 2 ]; | |
const d = rawIndices[ stride + 3 ]; | |
indices.push( a, b, c ); | |
indices.push( a, c, d ); | |
} else { | |
console.warn( 'THREE.USDZLoader: Face vertex count of %s unsupported.', count ); | |
} | |
} | |
return indices; | |
} | |
function toFlatBufferAttribute( attribute, indices ) { | |
const array = attribute.array; | |
const itemSize = attribute.itemSize; | |
const array2 = new array.constructor( indices.length * itemSize ); | |
let index = 0, index2 = 0; | |
for ( let i = 0, l = indices.length; i < l; i ++ ) { | |
index = indices[ i ] * itemSize; | |
for ( let j = 0; j < itemSize; j ++ ) { | |
array2[ index2 ++ ] = array[ index ++ ]; | |
} | |
} | |
return new BufferAttribute( array2, itemSize ); | |
} | |
function findMeshMaterial( data ) { | |
if ( ! data ) return undefined; | |
if ( 'rel material:binding' in data ) { | |
const reference = data[ 'rel material:binding' ]; | |
const id = reference.replace( /^<\//, '' ).replace( />$/, '' ); | |
const parts = id.split( '/' ); | |
return findMaterial( root, ` "${ parts[ 1 ] }"` ); | |
} | |
return findMaterial( data ); | |
} | |
function findMaterial( data, id = '' ) { | |
for ( const name in data ) { | |
const object = data[ name ]; | |
if ( name.startsWith( 'def Material' + id ) ) { | |
return object; | |
} | |
if ( typeof object === 'object' ) { | |
const material = findMaterial( object, id ); | |
if ( material ) return material; | |
} | |
} | |
} | |
function setTextureParams( map, data_value ) { | |
// rotation, scale and translation | |
if ( data_value[ 'float inputs:rotation' ] ) { | |
map.rotation = parseFloat( data_value[ 'float inputs:rotation' ] ); | |
} | |
if ( data_value[ 'float2 inputs:scale' ] ) { | |
map.repeat = new Vector2().fromArray( JSON.parse( '[' + data_value[ 'float2 inputs:scale' ].replace( /[()]*/g, '' ) + ']' ) ); | |
} | |
if ( data_value[ 'float2 inputs:translation' ] ) { | |
map.offset = new Vector2().fromArray( JSON.parse( '[' + data_value[ 'float2 inputs:translation' ].replace( /[()]*/g, '' ) + ']' ) ); | |
} | |
} | |
function buildMaterial( data ) { | |
const material = new MeshPhysicalMaterial(); | |
if ( data !== undefined ) { | |
const surfaceConnection = data[ 'token outputs:surface.connect' ]; | |
const surfaceName = /(\w+).output/.exec( surfaceConnection )[ 1 ]; | |
const surface = data[ `def Shader "${surfaceName}"` ]; | |
if ( surface !== undefined ) { | |
if ( 'color3f inputs:diffuseColor.connect' in surface ) { | |
const path = surface[ 'color3f inputs:diffuseColor.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.map = buildTexture( sampler ); | |
material.map.colorSpace = SRGBColorSpace; | |
if ( 'def Shader "Transform2d_diffuse"' in data ) { | |
setTextureParams( material.map, data[ 'def Shader "Transform2d_diffuse"' ] ); | |
} | |
} else if ( 'color3f inputs:diffuseColor' in surface ) { | |
const color = surface[ 'color3f inputs:diffuseColor' ].replace( /[()]*/g, '' ); | |
material.color.fromArray( JSON.parse( '[' + color + ']' ) ); | |
} | |
if ( 'color3f inputs:emissiveColor.connect' in surface ) { | |
const path = surface[ 'color3f inputs:emissiveColor.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.emissiveMap = buildTexture( sampler ); | |
material.emissiveMap.colorSpace = SRGBColorSpace; | |
material.emissive.set( 0xffffff ); | |
if ( 'def Shader "Transform2d_emissive"' in data ) { | |
setTextureParams( material.emissiveMap, data[ 'def Shader "Transform2d_emissive"' ] ); | |
} | |
} else if ( 'color3f inputs:emissiveColor' in surface ) { | |
const color = surface[ 'color3f inputs:emissiveColor' ].replace( /[()]*/g, '' ); | |
material.emissive.fromArray( JSON.parse( '[' + color + ']' ) ); | |
} | |
if ( 'normal3f inputs:normal.connect' in surface ) { | |
const path = surface[ 'normal3f inputs:normal.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.normalMap = buildTexture( sampler ); | |
material.normalMap.colorSpace = NoColorSpace; | |
if ( 'def Shader "Transform2d_normal"' in data ) { | |
setTextureParams( material.normalMap, data[ 'def Shader "Transform2d_normal"' ] ); | |
} | |
} | |
if ( 'float inputs:roughness.connect' in surface ) { | |
const path = surface[ 'float inputs:roughness.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.roughness = 1.0; | |
material.roughnessMap = buildTexture( sampler ); | |
material.roughnessMap.colorSpace = NoColorSpace; | |
if ( 'def Shader "Transform2d_roughness"' in data ) { | |
setTextureParams( material.roughnessMap, data[ 'def Shader "Transform2d_roughness"' ] ); | |
} | |
} else if ( 'float inputs:roughness' in surface ) { | |
material.roughness = parseFloat( surface[ 'float inputs:roughness' ] ); | |
} | |
if ( 'float inputs:metallic.connect' in surface ) { | |
const path = surface[ 'float inputs:metallic.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.metalness = 1.0; | |
material.metalnessMap = buildTexture( sampler ); | |
material.metalnessMap.colorSpace = NoColorSpace; | |
if ( 'def Shader "Transform2d_metallic"' in data ) { | |
setTextureParams( material.metalnessMap, data[ 'def Shader "Transform2d_metallic"' ] ); | |
} | |
} else if ( 'float inputs:metallic' in surface ) { | |
material.metalness = parseFloat( surface[ 'float inputs:metallic' ] ); | |
} | |
if ( 'float inputs:clearcoat.connect' in surface ) { | |
const path = surface[ 'float inputs:clearcoat.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.clearcoat = 1.0; | |
material.clearcoatMap = buildTexture( sampler ); | |
material.clearcoatMap.colorSpace = NoColorSpace; | |
if ( 'def Shader "Transform2d_clearcoat"' in data ) { | |
setTextureParams( material.clearcoatMap, data[ 'def Shader "Transform2d_clearcoat"' ] ); | |
} | |
} else if ( 'float inputs:clearcoat' in surface ) { | |
material.clearcoat = parseFloat( surface[ 'float inputs:clearcoat' ] ); | |
} | |
if ( 'float inputs:clearcoatRoughness.connect' in surface ) { | |
const path = surface[ 'float inputs:clearcoatRoughness.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.clearcoatRoughness = 1.0; | |
material.clearcoatRoughnessMap = buildTexture( sampler ); | |
material.clearcoatRoughnessMap.colorSpace = NoColorSpace; | |
if ( 'def Shader "Transform2d_clearcoatRoughness"' in data ) { | |
setTextureParams( material.clearcoatRoughnessMap, data[ 'def Shader "Transform2d_clearcoatRoughness"' ] ); | |
} | |
} else if ( 'float inputs:clearcoatRoughness' in surface ) { | |
material.clearcoatRoughness = parseFloat( surface[ 'float inputs:clearcoatRoughness' ] ); | |
} | |
if ( 'float inputs:ior' in surface ) { | |
material.ior = parseFloat( surface[ 'float inputs:ior' ] ); | |
} | |
if ( 'float inputs:occlusion.connect' in surface ) { | |
const path = surface[ 'float inputs:occlusion.connect' ]; | |
const sampler = findTexture( root, /(\w+).output/.exec( path )[ 1 ] ); | |
material.aoMap = buildTexture( sampler ); | |
material.aoMap.colorSpace = NoColorSpace; | |
if ( 'def Shader "Transform2d_occlusion"' in data ) { | |
setTextureParams( material.aoMap, data[ 'def Shader "Transform2d_occlusion"' ] ); | |
} | |
} | |
} | |
} | |
return material; | |
} | |
function findTexture( data, id ) { | |
for ( const name in data ) { | |
const object = data[ name ]; | |
if ( name.startsWith( `def Shader "${ id }"` ) ) { | |
return object; | |
} | |
if ( typeof object === 'object' ) { | |
const texture = findTexture( object, id ); | |
if ( texture ) return texture; | |
} | |
} | |
} | |
function buildTexture( data ) { | |
if ( 'asset inputs:file' in data ) { | |
const path = data[ 'asset inputs:file' ].replace( /@*/g, '' ).trim(); | |
const loader = new TextureLoader(); | |
const texture = loader.load( assets[ path ] ); | |
const map = { | |
'"clamp"': ClampToEdgeWrapping, | |
'"mirror"': MirroredRepeatWrapping, | |
'"repeat"': RepeatWrapping | |
}; | |
if ( 'token inputs:wrapS' in data ) { | |
texture.wrapS = map[ data[ 'token inputs:wrapS' ] ]; | |
} | |
if ( 'token inputs:wrapT' in data ) { | |
texture.wrapT = map[ data[ 'token inputs:wrapT' ] ]; | |
} | |
return texture; | |
} | |
return null; | |
} | |
function buildObject( data ) { | |
const geometry = buildGeometry( findMeshGeometry( data ) ); | |
const material = buildMaterial( findMeshMaterial( data ) ); | |
const mesh = geometry ? new Mesh( geometry, material ) : new Object3D(); | |
if ( 'matrix4d xformOp:transform' in data ) { | |
const array = JSON.parse( '[' + data[ 'matrix4d xformOp:transform' ].replace( /[()]*/g, '' ) + ']' ); | |
mesh.matrix.fromArray( array ); | |
mesh.matrix.decompose( mesh.position, mesh.quaternion, mesh.scale ); | |
} | |
return mesh; | |
} | |
function buildHierarchy( data, group ) { | |
for ( const name in data ) { | |
if ( name.startsWith( 'def Scope' ) ) { | |
buildHierarchy( data[ name ], group ); | |
} else if ( name.startsWith( 'def Xform' ) ) { | |
const mesh = buildObject( data[ name ] ); | |
if ( /def Xform "(\w+)"/.test( name ) ) { | |
mesh.name = /def Xform "(\w+)"/.exec( name )[ 1 ]; | |
} | |
group.add( mesh ); | |
buildHierarchy( data[ name ], mesh ); | |
} | |
} | |
} | |
const group = new Group(); | |
buildHierarchy( root, group ); | |
return group; | |
} | |
} | |
export { USDZLoader }; | |