Spaces:
Running
Running
import { | |
BufferAttribute, | |
BufferGeometry, | |
Color, | |
FileLoader, | |
Float32BufferAttribute, | |
Loader, | |
SRGBColorSpace | |
} from 'three'; | |
import * as fflate from '../libs/fflate.module.js'; | |
class VTKLoader extends Loader { | |
constructor( manager ) { | |
super( manager ); | |
} | |
load( url, onLoad, onProgress, onError ) { | |
const scope = this; | |
const loader = new FileLoader( scope.manager ); | |
loader.setPath( scope.path ); | |
loader.setResponseType( 'arraybuffer' ); | |
loader.setRequestHeader( scope.requestHeader ); | |
loader.setWithCredentials( scope.withCredentials ); | |
loader.load( url, function ( text ) { | |
try { | |
onLoad( scope.parse( text ) ); | |
} catch ( e ) { | |
if ( onError ) { | |
onError( e ); | |
} else { | |
console.error( e ); | |
} | |
scope.manager.itemError( url ); | |
} | |
}, onProgress, onError ); | |
} | |
parse( data ) { | |
function parseASCII( data ) { | |
// connectivity of the triangles | |
const indices = []; | |
// triangles vertices | |
const positions = []; | |
// red, green, blue colors in the range 0 to 1 | |
const colors = []; | |
// normal vector, one per vertex | |
const normals = []; | |
let result; | |
// pattern for detecting the end of a number sequence | |
const patWord = /^[^\d.\s-]+/; | |
// pattern for reading vertices, 3 floats or integers | |
const pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g; | |
// pattern for connectivity, an integer followed by any number of ints | |
// the first integer is the number of polygon nodes | |
const patConnectivity = /^(\d+)\s+([\s\d]*)/; | |
// indicates start of vertex data section | |
const patPOINTS = /^POINTS /; | |
// indicates start of polygon connectivity section | |
const patPOLYGONS = /^POLYGONS /; | |
// indicates start of triangle strips section | |
const patTRIANGLE_STRIPS = /^TRIANGLE_STRIPS /; | |
// POINT_DATA number_of_values | |
const patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/; | |
// CELL_DATA number_of_polys | |
const patCELL_DATA = /^CELL_DATA[ ]+(\d+)/; | |
// Start of color section | |
const patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/; | |
// NORMALS Normals float | |
const patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/; | |
let inPointsSection = false; | |
let inPolygonsSection = false; | |
let inTriangleStripSection = false; | |
let inPointDataSection = false; | |
let inCellDataSection = false; | |
let inColorSection = false; | |
let inNormalsSection = false; | |
const color = new Color(); | |
const lines = data.split( '\n' ); | |
for ( const i in lines ) { | |
const line = lines[ i ].trim(); | |
if ( line.indexOf( 'DATASET' ) === 0 ) { | |
const dataset = line.split( ' ' )[ 1 ]; | |
if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset ); | |
} else if ( inPointsSection ) { | |
// get the vertices | |
while ( ( result = pat3Floats.exec( line ) ) !== null ) { | |
if ( patWord.exec( line ) !== null ) break; | |
const x = parseFloat( result[ 1 ] ); | |
const y = parseFloat( result[ 2 ] ); | |
const z = parseFloat( result[ 3 ] ); | |
positions.push( x, y, z ); | |
} | |
} else if ( inPolygonsSection ) { | |
if ( ( result = patConnectivity.exec( line ) ) !== null ) { | |
// numVertices i0 i1 i2 ... | |
const numVertices = parseInt( result[ 1 ] ); | |
const inds = result[ 2 ].split( /\s+/ ); | |
if ( numVertices >= 3 ) { | |
const i0 = parseInt( inds[ 0 ] ); | |
let k = 1; | |
// split the polygon in numVertices - 2 triangles | |
for ( let j = 0; j < numVertices - 2; ++ j ) { | |
const i1 = parseInt( inds[ k ] ); | |
const i2 = parseInt( inds[ k + 1 ] ); | |
indices.push( i0, i1, i2 ); | |
k ++; | |
} | |
} | |
} | |
} else if ( inTriangleStripSection ) { | |
if ( ( result = patConnectivity.exec( line ) ) !== null ) { | |
// numVertices i0 i1 i2 ... | |
const numVertices = parseInt( result[ 1 ] ); | |
const inds = result[ 2 ].split( /\s+/ ); | |
if ( numVertices >= 3 ) { | |
// split the polygon in numVertices - 2 triangles | |
for ( let j = 0; j < numVertices - 2; j ++ ) { | |
if ( j % 2 === 1 ) { | |
const i0 = parseInt( inds[ j ] ); | |
const i1 = parseInt( inds[ j + 2 ] ); | |
const i2 = parseInt( inds[ j + 1 ] ); | |
indices.push( i0, i1, i2 ); | |
} else { | |
const i0 = parseInt( inds[ j ] ); | |
const i1 = parseInt( inds[ j + 1 ] ); | |
const i2 = parseInt( inds[ j + 2 ] ); | |
indices.push( i0, i1, i2 ); | |
} | |
} | |
} | |
} | |
} else if ( inPointDataSection || inCellDataSection ) { | |
if ( inColorSection ) { | |
// Get the colors | |
while ( ( result = pat3Floats.exec( line ) ) !== null ) { | |
if ( patWord.exec( line ) !== null ) break; | |
const r = parseFloat( result[ 1 ] ); | |
const g = parseFloat( result[ 2 ] ); | |
const b = parseFloat( result[ 3 ] ); | |
color.setRGB( r, g, b, SRGBColorSpace ); | |
colors.push( color.r, color.g, color.b ); | |
} | |
} else if ( inNormalsSection ) { | |
// Get the normal vectors | |
while ( ( result = pat3Floats.exec( line ) ) !== null ) { | |
if ( patWord.exec( line ) !== null ) break; | |
const nx = parseFloat( result[ 1 ] ); | |
const ny = parseFloat( result[ 2 ] ); | |
const nz = parseFloat( result[ 3 ] ); | |
normals.push( nx, ny, nz ); | |
} | |
} | |
} | |
if ( patPOLYGONS.exec( line ) !== null ) { | |
inPolygonsSection = true; | |
inPointsSection = false; | |
inTriangleStripSection = false; | |
} else if ( patPOINTS.exec( line ) !== null ) { | |
inPolygonsSection = false; | |
inPointsSection = true; | |
inTriangleStripSection = false; | |
} else if ( patTRIANGLE_STRIPS.exec( line ) !== null ) { | |
inPolygonsSection = false; | |
inPointsSection = false; | |
inTriangleStripSection = true; | |
} else if ( patPOINT_DATA.exec( line ) !== null ) { | |
inPointDataSection = true; | |
inPointsSection = false; | |
inPolygonsSection = false; | |
inTriangleStripSection = false; | |
} else if ( patCELL_DATA.exec( line ) !== null ) { | |
inCellDataSection = true; | |
inPointsSection = false; | |
inPolygonsSection = false; | |
inTriangleStripSection = false; | |
} else if ( patCOLOR_SCALARS.exec( line ) !== null ) { | |
inColorSection = true; | |
inNormalsSection = false; | |
inPointsSection = false; | |
inPolygonsSection = false; | |
inTriangleStripSection = false; | |
} else if ( patNORMALS.exec( line ) !== null ) { | |
inNormalsSection = true; | |
inColorSection = false; | |
inPointsSection = false; | |
inPolygonsSection = false; | |
inTriangleStripSection = false; | |
} | |
} | |
let geometry = new BufferGeometry(); | |
geometry.setIndex( indices ); | |
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); | |
if ( normals.length === positions.length ) { | |
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); | |
} | |
if ( colors.length !== indices.length ) { | |
// stagger | |
if ( colors.length === positions.length ) { | |
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); | |
} | |
} else { | |
// cell | |
geometry = geometry.toNonIndexed(); | |
const numTriangles = geometry.attributes.position.count / 3; | |
if ( colors.length === ( numTriangles * 3 ) ) { | |
const newColors = []; | |
for ( let i = 0; i < numTriangles; i ++ ) { | |
const r = colors[ 3 * i + 0 ]; | |
const g = colors[ 3 * i + 1 ]; | |
const b = colors[ 3 * i + 2 ]; | |
color.setRGB( r, g, b, SRGBColorSpace ); | |
newColors.push( color.r, color.g, color.b ); | |
newColors.push( color.r, color.g, color.b ); | |
newColors.push( color.r, color.g, color.b ); | |
} | |
geometry.setAttribute( 'color', new Float32BufferAttribute( newColors, 3 ) ); | |
} | |
} | |
return geometry; | |
} | |
function parseBinary( data ) { | |
const buffer = new Uint8Array( data ); | |
const dataView = new DataView( data ); | |
// Points and normals, by default, are empty | |
let points = []; | |
let normals = []; | |
let indices = []; | |
let index = 0; | |
function findString( buffer, start ) { | |
let index = start; | |
let c = buffer[ index ]; | |
const s = []; | |
while ( c !== 10 ) { | |
s.push( String.fromCharCode( c ) ); | |
index ++; | |
c = buffer[ index ]; | |
} | |
return { start: start, | |
end: index, | |
next: index + 1, | |
parsedString: s.join( '' ) }; | |
} | |
let state, line; | |
while ( true ) { | |
// Get a string | |
state = findString( buffer, index ); | |
line = state.parsedString; | |
if ( line.indexOf( 'DATASET' ) === 0 ) { | |
const dataset = line.split( ' ' )[ 1 ]; | |
if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset ); | |
} else if ( line.indexOf( 'POINTS' ) === 0 ) { | |
// Add the points | |
const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 ); | |
// Each point is 3 4-byte floats | |
const count = numberOfPoints * 4 * 3; | |
points = new Float32Array( numberOfPoints * 3 ); | |
let pointIndex = state.next; | |
for ( let i = 0; i < numberOfPoints; i ++ ) { | |
points[ 3 * i ] = dataView.getFloat32( pointIndex, false ); | |
points[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false ); | |
points[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false ); | |
pointIndex = pointIndex + 12; | |
} | |
// increment our next pointer | |
state.next = state.next + count + 1; | |
} else if ( line.indexOf( 'TRIANGLE_STRIPS' ) === 0 ) { | |
const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 ); | |
const size = parseInt( line.split( ' ' )[ 2 ], 10 ); | |
// 4 byte integers | |
const count = size * 4; | |
indices = new Uint32Array( 3 * size - 9 * numberOfStrips ); | |
let indicesIndex = 0; | |
let pointIndex = state.next; | |
for ( let i = 0; i < numberOfStrips; i ++ ) { | |
// For each strip, read the first value, then record that many more points | |
const indexCount = dataView.getInt32( pointIndex, false ); | |
const strip = []; | |
pointIndex += 4; | |
for ( let s = 0; s < indexCount; s ++ ) { | |
strip.push( dataView.getInt32( pointIndex, false ) ); | |
pointIndex += 4; | |
} | |
// retrieves the n-2 triangles from the triangle strip | |
for ( let j = 0; j < indexCount - 2; j ++ ) { | |
if ( j % 2 ) { | |
indices[ indicesIndex ++ ] = strip[ j ]; | |
indices[ indicesIndex ++ ] = strip[ j + 2 ]; | |
indices[ indicesIndex ++ ] = strip[ j + 1 ]; | |
} else { | |
indices[ indicesIndex ++ ] = strip[ j ]; | |
indices[ indicesIndex ++ ] = strip[ j + 1 ]; | |
indices[ indicesIndex ++ ] = strip[ j + 2 ]; | |
} | |
} | |
} | |
// increment our next pointer | |
state.next = state.next + count + 1; | |
} else if ( line.indexOf( 'POLYGONS' ) === 0 ) { | |
const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 ); | |
const size = parseInt( line.split( ' ' )[ 2 ], 10 ); | |
// 4 byte integers | |
const count = size * 4; | |
indices = new Uint32Array( 3 * size - 9 * numberOfStrips ); | |
let indicesIndex = 0; | |
let pointIndex = state.next; | |
for ( let i = 0; i < numberOfStrips; i ++ ) { | |
// For each strip, read the first value, then record that many more points | |
const indexCount = dataView.getInt32( pointIndex, false ); | |
const strip = []; | |
pointIndex += 4; | |
for ( let s = 0; s < indexCount; s ++ ) { | |
strip.push( dataView.getInt32( pointIndex, false ) ); | |
pointIndex += 4; | |
} | |
// divide the polygon in n-2 triangle | |
for ( let j = 1; j < indexCount - 1; j ++ ) { | |
indices[ indicesIndex ++ ] = strip[ 0 ]; | |
indices[ indicesIndex ++ ] = strip[ j ]; | |
indices[ indicesIndex ++ ] = strip[ j + 1 ]; | |
} | |
} | |
// increment our next pointer | |
state.next = state.next + count + 1; | |
} else if ( line.indexOf( 'POINT_DATA' ) === 0 ) { | |
const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 ); | |
// Grab the next line | |
state = findString( buffer, state.next ); | |
// Now grab the binary data | |
const count = numberOfPoints * 4 * 3; | |
normals = new Float32Array( numberOfPoints * 3 ); | |
let pointIndex = state.next; | |
for ( let i = 0; i < numberOfPoints; i ++ ) { | |
normals[ 3 * i ] = dataView.getFloat32( pointIndex, false ); | |
normals[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false ); | |
normals[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false ); | |
pointIndex += 12; | |
} | |
// Increment past our data | |
state.next = state.next + count; | |
} | |
// Increment index | |
index = state.next; | |
if ( index >= buffer.byteLength ) { | |
break; | |
} | |
} | |
const geometry = new BufferGeometry(); | |
geometry.setIndex( new BufferAttribute( indices, 1 ) ); | |
geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) ); | |
if ( normals.length === points.length ) { | |
geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) ); | |
} | |
return geometry; | |
} | |
function Float32Concat( first, second ) { | |
const firstLength = first.length, result = new Float32Array( firstLength + second.length ); | |
result.set( first ); | |
result.set( second, firstLength ); | |
return result; | |
} | |
function Int32Concat( first, second ) { | |
const firstLength = first.length, result = new Int32Array( firstLength + second.length ); | |
result.set( first ); | |
result.set( second, firstLength ); | |
return result; | |
} | |
function parseXML( stringFile ) { | |
// Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json | |
function xmlToJson( xml ) { | |
// Create the return object | |
let obj = {}; | |
if ( xml.nodeType === 1 ) { // element | |
// do attributes | |
if ( xml.attributes ) { | |
if ( xml.attributes.length > 0 ) { | |
obj[ 'attributes' ] = {}; | |
for ( let j = 0; j < xml.attributes.length; j ++ ) { | |
const attribute = xml.attributes.item( j ); | |
obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim(); | |
} | |
} | |
} | |
} else if ( xml.nodeType === 3 ) { // text | |
obj = xml.nodeValue.trim(); | |
} | |
// do children | |
if ( xml.hasChildNodes() ) { | |
for ( let i = 0; i < xml.childNodes.length; i ++ ) { | |
const item = xml.childNodes.item( i ); | |
const nodeName = item.nodeName; | |
if ( typeof obj[ nodeName ] === 'undefined' ) { | |
const tmp = xmlToJson( item ); | |
if ( tmp !== '' ) { | |
if ( Array.isArray( tmp[ '#text' ] ) ) { | |
tmp[ '#text' ] = tmp[ '#text' ][ 0 ]; | |
} | |
obj[ nodeName ] = tmp; | |
} | |
} else { | |
if ( typeof obj[ nodeName ].push === 'undefined' ) { | |
const old = obj[ nodeName ]; | |
obj[ nodeName ] = [ old ]; | |
} | |
const tmp = xmlToJson( item ); | |
if ( tmp !== '' ) { | |
if ( Array.isArray( tmp[ '#text' ] ) ) { | |
tmp[ '#text' ] = tmp[ '#text' ][ 0 ]; | |
} | |
obj[ nodeName ].push( tmp ); | |
} | |
} | |
} | |
} | |
return obj; | |
} | |
// Taken from Base64-js | |
function Base64toByteArray( b64 ) { | |
const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array; | |
const revLookup = []; | |
const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; | |
for ( let i = 0, l = code.length; i < l; ++ i ) { | |
revLookup[ code.charCodeAt( i ) ] = i; | |
} | |
revLookup[ '-'.charCodeAt( 0 ) ] = 62; | |
revLookup[ '_'.charCodeAt( 0 ) ] = 63; | |
const len = b64.length; | |
if ( len % 4 > 0 ) { | |
throw new Error( 'Invalid string. Length must be a multiple of 4' ); | |
} | |
const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0; | |
const arr = new Arr( len * 3 / 4 - placeHolders ); | |
const l = placeHolders > 0 ? len - 4 : len; | |
let L = 0; | |
let i, j; | |
for ( i = 0, j = 0; i < l; i += 4, j += 3 ) { | |
const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ]; | |
arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16; | |
arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8; | |
arr[ L ++ ] = tmp & 0xFF; | |
} | |
if ( placeHolders === 2 ) { | |
const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 ); | |
arr[ L ++ ] = tmp & 0xFF; | |
} else if ( placeHolders === 1 ) { | |
const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 ); | |
arr[ L ++ ] = ( tmp >> 8 ) & 0xFF; | |
arr[ L ++ ] = tmp & 0xFF; | |
} | |
return arr; | |
} | |
function parseDataArray( ele, compressed ) { | |
let numBytes = 0; | |
if ( json.attributes.header_type === 'UInt64' ) { | |
numBytes = 8; | |
} else if ( json.attributes.header_type === 'UInt32' ) { | |
numBytes = 4; | |
} | |
let txt, content; | |
// Check the format | |
if ( ele.attributes.format === 'binary' && compressed ) { | |
if ( ele.attributes.type === 'Float32' ) { | |
txt = new Float32Array( ); | |
} else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) { | |
txt = new Int32Array( ); | |
} | |
// VTP data with the header has the following structure: | |
// [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA] | |
// | |
// Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are: | |
// [#blocks] = Number of blocks | |
// [#u-size] = Block size before compression | |
// [#p-size] = Size of last partial block (zero if it not needed) | |
// [#c-size-i] = Size in bytes of block i after compression | |
// | |
// The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is | |
// computed by summing the compressed block sizes from preceding blocks according to the header. | |
const textNode = ele[ '#text' ]; | |
const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode; | |
const byteData = Base64toByteArray( rawData ); | |
// Each data point consists of 8 bits regardless of the header type | |
const dataPointSize = 8; | |
let blocks = byteData[ 0 ]; | |
for ( let i = 1; i < numBytes - 1; i ++ ) { | |
blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) ); | |
} | |
let headerSize = ( blocks + 3 ) * numBytes; | |
const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0; | |
headerSize = headerSize + padding; | |
const dataOffsets = []; | |
let currentOffset = headerSize; | |
dataOffsets.push( currentOffset ); | |
// Get the blocks sizes after the compression. | |
// There are three blocks before c-size-i, so we skip 3*numBytes | |
const cSizeStart = 3 * numBytes; | |
for ( let i = 0; i < blocks; i ++ ) { | |
let currentBlockSize = byteData[ i * numBytes + cSizeStart ]; | |
for ( let j = 1; j < numBytes - 1; j ++ ) { | |
currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) ); | |
} | |
currentOffset = currentOffset + currentBlockSize; | |
dataOffsets.push( currentOffset ); | |
} | |
for ( let i = 0; i < dataOffsets.length - 1; i ++ ) { | |
const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) ); | |
content = data.buffer; | |
if ( ele.attributes.type === 'Float32' ) { | |
content = new Float32Array( content ); | |
txt = Float32Concat( txt, content ); | |
} else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) { | |
content = new Int32Array( content ); | |
txt = Int32Concat( txt, content ); | |
} | |
} | |
delete ele[ '#text' ]; | |
if ( ele.attributes.type === 'Int64' ) { | |
if ( ele.attributes.format === 'binary' ) { | |
txt = txt.filter( function ( el, idx ) { | |
if ( idx % 2 !== 1 ) return true; | |
} ); | |
} | |
} | |
} else { | |
if ( ele.attributes.format === 'binary' && ! compressed ) { | |
content = Base64toByteArray( ele[ '#text' ] ); | |
// VTP data for the uncompressed case has the following structure: | |
// [#bytes][DATA] | |
// where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it. | |
content = content.slice( numBytes ).buffer; | |
} else { | |
if ( ele[ '#text' ] ) { | |
content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) { | |
if ( el !== '' ) return el; | |
} ); | |
} else { | |
content = new Int32Array( 0 ).buffer; | |
} | |
} | |
delete ele[ '#text' ]; | |
// Get the content and optimize it | |
if ( ele.attributes.type === 'Float32' ) { | |
txt = new Float32Array( content ); | |
} else if ( ele.attributes.type === 'Int32' ) { | |
txt = new Int32Array( content ); | |
} else if ( ele.attributes.type === 'Int64' ) { | |
txt = new Int32Array( content ); | |
if ( ele.attributes.format === 'binary' ) { | |
txt = txt.filter( function ( el, idx ) { | |
if ( idx % 2 !== 1 ) return true; | |
} ); | |
} | |
} | |
} // endif ( ele.attributes.format === 'binary' && compressed ) | |
return txt; | |
} | |
// Main part | |
// Get Dom | |
const dom = new DOMParser().parseFromString( stringFile, 'application/xml' ); | |
// Get the doc | |
const doc = dom.documentElement; | |
// Convert to json | |
const json = xmlToJson( doc ); | |
let points = []; | |
let normals = []; | |
let indices = []; | |
if ( json.AppendedData ) { | |
const appendedData = json.AppendedData[ '#text' ].slice( 1 ); | |
const piece = json.PolyData.Piece; | |
const sections = [ 'PointData', 'CellData', 'Points', 'Verts', 'Lines', 'Strips', 'Polys' ]; | |
let sectionIndex = 0; | |
const offsets = sections.map( s => { | |
const sect = piece[ s ]; | |
if ( sect && sect.DataArray ) { | |
const arr = Array.isArray( sect.DataArray ) ? sect.DataArray : [ sect.DataArray ]; | |
return arr.map( a => a.attributes.offset ); | |
} | |
return []; | |
} ).flat(); | |
for ( const sect of sections ) { | |
const section = piece[ sect ]; | |
if ( section && section.DataArray ) { | |
if ( Array.isArray( section.DataArray ) ) { | |
for ( const sectionEle of section.DataArray ) { | |
sectionEle[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] ); | |
sectionEle.attributes.format = 'binary'; | |
sectionIndex ++; | |
} | |
} else { | |
section.DataArray[ '#text' ] = appendedData.slice( offsets[ sectionIndex ], offsets[ sectionIndex + 1 ] ); | |
section.DataArray.attributes.format = 'binary'; | |
sectionIndex ++; | |
} | |
} | |
} | |
} | |
if ( json.PolyData ) { | |
const piece = json.PolyData.Piece; | |
const compressed = json.attributes.hasOwnProperty( 'compressor' ); | |
// Can be optimized | |
// Loop through the sections | |
const sections = [ 'PointData', 'Points', 'Strips', 'Polys' ];// +['CellData', 'Verts', 'Lines']; | |
let sectionIndex = 0; | |
const numberOfSections = sections.length; | |
while ( sectionIndex < numberOfSections ) { | |
const section = piece[ sections[ sectionIndex ] ]; | |
// If it has a DataArray in it | |
if ( section && section.DataArray ) { | |
// Depending on the number of DataArrays | |
let arr; | |
if ( Array.isArray( section.DataArray ) ) { | |
arr = section.DataArray; | |
} else { | |
arr = [ section.DataArray ]; | |
} | |
let dataArrayIndex = 0; | |
const numberOfDataArrays = arr.length; | |
while ( dataArrayIndex < numberOfDataArrays ) { | |
// Parse the DataArray | |
if ( ( '#text' in arr[ dataArrayIndex ] ) && ( arr[ dataArrayIndex ][ '#text' ].length > 0 ) ) { | |
arr[ dataArrayIndex ].text = parseDataArray( arr[ dataArrayIndex ], compressed ); | |
} | |
dataArrayIndex ++; | |
} | |
switch ( sections[ sectionIndex ] ) { | |
// if iti is point data | |
case 'PointData': | |
{ | |
const numberOfPoints = parseInt( piece.attributes.NumberOfPoints ); | |
const normalsName = section.attributes.Normals; | |
if ( numberOfPoints > 0 ) { | |
for ( let i = 0, len = arr.length; i < len; i ++ ) { | |
if ( normalsName === arr[ i ].attributes.Name ) { | |
const components = arr[ i ].attributes.NumberOfComponents; | |
normals = new Float32Array( numberOfPoints * components ); | |
normals.set( arr[ i ].text, 0 ); | |
} | |
} | |
} | |
} | |
break; | |
// if it is points | |
case 'Points': | |
{ | |
const numberOfPoints = parseInt( piece.attributes.NumberOfPoints ); | |
if ( numberOfPoints > 0 ) { | |
const components = section.DataArray.attributes.NumberOfComponents; | |
points = new Float32Array( numberOfPoints * components ); | |
points.set( section.DataArray.text, 0 ); | |
} | |
} | |
break; | |
// if it is strips | |
case 'Strips': | |
{ | |
const numberOfStrips = parseInt( piece.attributes.NumberOfStrips ); | |
if ( numberOfStrips > 0 ) { | |
const connectivity = new Int32Array( section.DataArray[ 0 ].text.length ); | |
const offset = new Int32Array( section.DataArray[ 1 ].text.length ); | |
connectivity.set( section.DataArray[ 0 ].text, 0 ); | |
offset.set( section.DataArray[ 1 ].text, 0 ); | |
const size = numberOfStrips + connectivity.length; | |
indices = new Uint32Array( 3 * size - 9 * numberOfStrips ); | |
let indicesIndex = 0; | |
for ( let i = 0, len = numberOfStrips; i < len; i ++ ) { | |
const strip = []; | |
for ( let s = 0, len1 = offset[ i ], len0 = 0; s < len1 - len0; s ++ ) { | |
strip.push( connectivity[ s ] ); | |
if ( i > 0 ) len0 = offset[ i - 1 ]; | |
} | |
for ( let j = 0, len1 = offset[ i ], len0 = 0; j < len1 - len0 - 2; j ++ ) { | |
if ( j % 2 ) { | |
indices[ indicesIndex ++ ] = strip[ j ]; | |
indices[ indicesIndex ++ ] = strip[ j + 2 ]; | |
indices[ indicesIndex ++ ] = strip[ j + 1 ]; | |
} else { | |
indices[ indicesIndex ++ ] = strip[ j ]; | |
indices[ indicesIndex ++ ] = strip[ j + 1 ]; | |
indices[ indicesIndex ++ ] = strip[ j + 2 ]; | |
} | |
if ( i > 0 ) len0 = offset[ i - 1 ]; | |
} | |
} | |
} | |
} | |
break; | |
// if it is polys | |
case 'Polys': | |
{ | |
const numberOfPolys = parseInt( piece.attributes.NumberOfPolys ); | |
if ( numberOfPolys > 0 ) { | |
const connectivity = new Int32Array( section.DataArray[ 0 ].text.length ); | |
const offset = new Int32Array( section.DataArray[ 1 ].text.length ); | |
connectivity.set( section.DataArray[ 0 ].text, 0 ); | |
offset.set( section.DataArray[ 1 ].text, 0 ); | |
const size = numberOfPolys + connectivity.length; | |
indices = new Uint32Array( 3 * size - 9 * numberOfPolys ); | |
let indicesIndex = 0, connectivityIndex = 0; | |
let i = 0, len0 = 0; | |
const len = numberOfPolys; | |
while ( i < len ) { | |
const poly = []; | |
let s = 0; | |
const len1 = offset[ i ]; | |
while ( s < len1 - len0 ) { | |
poly.push( connectivity[ connectivityIndex ++ ] ); | |
s ++; | |
} | |
let j = 1; | |
while ( j < len1 - len0 - 1 ) { | |
indices[ indicesIndex ++ ] = poly[ 0 ]; | |
indices[ indicesIndex ++ ] = poly[ j ]; | |
indices[ indicesIndex ++ ] = poly[ j + 1 ]; | |
j ++; | |
} | |
i ++; | |
len0 = offset[ i - 1 ]; | |
} | |
} | |
} | |
break; | |
default: | |
break; | |
} | |
} | |
sectionIndex ++; | |
} | |
const geometry = new BufferGeometry(); | |
geometry.setIndex( new BufferAttribute( indices, 1 ) ); | |
geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) ); | |
if ( normals.length === points.length ) { | |
geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) ); | |
} | |
return geometry; | |
} else { | |
throw new Error( 'Unsupported DATASET type' ); | |
} | |
} | |
const textDecoder = new TextDecoder(); | |
// get the 5 first lines of the files to check if there is the key word binary | |
const meta = textDecoder.decode( new Uint8Array( data, 0, 250 ) ).split( '\n' ); | |
if ( meta[ 0 ].indexOf( 'xml' ) !== - 1 ) { | |
return parseXML( textDecoder.decode( data ) ); | |
} else if ( meta[ 2 ].includes( 'ASCII' ) ) { | |
return parseASCII( textDecoder.decode( data ) ); | |
} else { | |
return parseBinary( data ); | |
} | |
} | |
} | |
export { VTKLoader }; | |