Spaces:
Running
Running
import { | |
Box3, | |
MathUtils, | |
Matrix4, | |
Matrix3, | |
Ray, | |
Vector3 | |
} from 'three'; | |
// module scope helper variables | |
const a = { | |
c: null, // center | |
u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors | |
e: [] // half width | |
}; | |
const b = { | |
c: null, // center | |
u: [ new Vector3(), new Vector3(), new Vector3() ], // basis vectors | |
e: [] // half width | |
}; | |
const R = [[], [], []]; | |
const AbsR = [[], [], []]; | |
const t = []; | |
const xAxis = new Vector3(); | |
const yAxis = new Vector3(); | |
const zAxis = new Vector3(); | |
const v1 = new Vector3(); | |
const size = new Vector3(); | |
const closestPoint = new Vector3(); | |
const rotationMatrix = new Matrix3(); | |
const aabb = new Box3(); | |
const matrix = new Matrix4(); | |
const inverse = new Matrix4(); | |
const localRay = new Ray(); | |
// OBB | |
class OBB { | |
constructor( center = new Vector3(), halfSize = new Vector3(), rotation = new Matrix3() ) { | |
this.center = center; | |
this.halfSize = halfSize; | |
this.rotation = rotation; | |
} | |
set( center, halfSize, rotation ) { | |
this.center = center; | |
this.halfSize = halfSize; | |
this.rotation = rotation; | |
return this; | |
} | |
copy( obb ) { | |
this.center.copy( obb.center ); | |
this.halfSize.copy( obb.halfSize ); | |
this.rotation.copy( obb.rotation ); | |
return this; | |
} | |
clone() { | |
return new this.constructor().copy( this ); | |
} | |
getSize( result ) { | |
return result.copy( this.halfSize ).multiplyScalar( 2 ); | |
} | |
/** | |
* Reference: Closest Point on OBB to Point in Real-Time Collision Detection | |
* by Christer Ericson (chapter 5.1.4) | |
* | |
* @param {Vector3} point | |
* @param {Vector3} result | |
* @returns {Vector3} | |
*/ | |
clampPoint( point, result ) { | |
const halfSize = this.halfSize; | |
v1.subVectors( point, this.center ); | |
this.rotation.extractBasis( xAxis, yAxis, zAxis ); | |
// start at the center position of the OBB | |
result.copy( this.center ); | |
// project the target onto the OBB axes and walk towards that point | |
const x = MathUtils.clamp( v1.dot( xAxis ), - halfSize.x, halfSize.x ); | |
result.add( xAxis.multiplyScalar( x ) ); | |
const y = MathUtils.clamp( v1.dot( yAxis ), - halfSize.y, halfSize.y ); | |
result.add( yAxis.multiplyScalar( y ) ); | |
const z = MathUtils.clamp( v1.dot( zAxis ), - halfSize.z, halfSize.z ); | |
result.add( zAxis.multiplyScalar( z ) ); | |
return result; | |
} | |
containsPoint( point ) { | |
v1.subVectors( point, this.center ); | |
this.rotation.extractBasis( xAxis, yAxis, zAxis ); | |
// project v1 onto each axis and check if these points lie inside the OBB | |
return Math.abs( v1.dot( xAxis ) ) <= this.halfSize.x && | |
Math.abs( v1.dot( yAxis ) ) <= this.halfSize.y && | |
Math.abs( v1.dot( zAxis ) ) <= this.halfSize.z; | |
} | |
intersectsBox3( box3 ) { | |
return this.intersectsOBB( obb.fromBox3( box3 ) ); | |
} | |
intersectsSphere( sphere ) { | |
// find the point on the OBB closest to the sphere center | |
this.clampPoint( sphere.center, closestPoint ); | |
// if that point is inside the sphere, the OBB and sphere intersect | |
return closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); | |
} | |
/** | |
* Reference: OBB-OBB Intersection in Real-Time Collision Detection | |
* by Christer Ericson (chapter 4.4.1) | |
* | |
* @param {OBB} obb | |
* @param {Number} [epsilon=Number.EPSILON] - A small value to prevent arithmetic errors | |
* @returns {Boolean} | |
*/ | |
intersectsOBB( obb, epsilon = Number.EPSILON ) { | |
// prepare data structures (the code uses the same nomenclature like the reference) | |
a.c = this.center; | |
a.e[ 0 ] = this.halfSize.x; | |
a.e[ 1 ] = this.halfSize.y; | |
a.e[ 2 ] = this.halfSize.z; | |
this.rotation.extractBasis( a.u[ 0 ], a.u[ 1 ], a.u[ 2 ] ); | |
b.c = obb.center; | |
b.e[ 0 ] = obb.halfSize.x; | |
b.e[ 1 ] = obb.halfSize.y; | |
b.e[ 2 ] = obb.halfSize.z; | |
obb.rotation.extractBasis( b.u[ 0 ], b.u[ 1 ], b.u[ 2 ] ); | |
// compute rotation matrix expressing b in a's coordinate frame | |
for ( let i = 0; i < 3; i ++ ) { | |
for ( let j = 0; j < 3; j ++ ) { | |
R[ i ][ j ] = a.u[ i ].dot( b.u[ j ] ); | |
} | |
} | |
// compute translation vector | |
v1.subVectors( b.c, a.c ); | |
// bring translation into a's coordinate frame | |
t[ 0 ] = v1.dot( a.u[ 0 ] ); | |
t[ 1 ] = v1.dot( a.u[ 1 ] ); | |
t[ 2 ] = v1.dot( a.u[ 2 ] ); | |
// compute common subexpressions. Add in an epsilon term to | |
// counteract arithmetic errors when two edges are parallel and | |
// their cross product is (near) null | |
for ( let i = 0; i < 3; i ++ ) { | |
for ( let j = 0; j < 3; j ++ ) { | |
AbsR[ i ][ j ] = Math.abs( R[ i ][ j ] ) + epsilon; | |
} | |
} | |
let ra, rb; | |
// test axes L = A0, L = A1, L = A2 | |
for ( let i = 0; i < 3; i ++ ) { | |
ra = a.e[ i ]; | |
rb = b.e[ 0 ] * AbsR[ i ][ 0 ] + b.e[ 1 ] * AbsR[ i ][ 1 ] + b.e[ 2 ] * AbsR[ i ][ 2 ]; | |
if ( Math.abs( t[ i ] ) > ra + rb ) return false; | |
} | |
// test axes L = B0, L = B1, L = B2 | |
for ( let i = 0; i < 3; i ++ ) { | |
ra = a.e[ 0 ] * AbsR[ 0 ][ i ] + a.e[ 1 ] * AbsR[ 1 ][ i ] + a.e[ 2 ] * AbsR[ 2 ][ i ]; | |
rb = b.e[ i ]; | |
if ( Math.abs( t[ 0 ] * R[ 0 ][ i ] + t[ 1 ] * R[ 1 ][ i ] + t[ 2 ] * R[ 2 ][ i ] ) > ra + rb ) return false; | |
} | |
// test axis L = A0 x B0 | |
ra = a.e[ 1 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 1 ][ 0 ]; | |
rb = b.e[ 1 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 1 ]; | |
if ( Math.abs( t[ 2 ] * R[ 1 ][ 0 ] - t[ 1 ] * R[ 2 ][ 0 ] ) > ra + rb ) return false; | |
// test axis L = A0 x B1 | |
ra = a.e[ 1 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 1 ][ 1 ]; | |
rb = b.e[ 0 ] * AbsR[ 0 ][ 2 ] + b.e[ 2 ] * AbsR[ 0 ][ 0 ]; | |
if ( Math.abs( t[ 2 ] * R[ 1 ][ 1 ] - t[ 1 ] * R[ 2 ][ 1 ] ) > ra + rb ) return false; | |
// test axis L = A0 x B2 | |
ra = a.e[ 1 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 1 ][ 2 ]; | |
rb = b.e[ 0 ] * AbsR[ 0 ][ 1 ] + b.e[ 1 ] * AbsR[ 0 ][ 0 ]; | |
if ( Math.abs( t[ 2 ] * R[ 1 ][ 2 ] - t[ 1 ] * R[ 2 ][ 2 ] ) > ra + rb ) return false; | |
// test axis L = A1 x B0 | |
ra = a.e[ 0 ] * AbsR[ 2 ][ 0 ] + a.e[ 2 ] * AbsR[ 0 ][ 0 ]; | |
rb = b.e[ 1 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 1 ]; | |
if ( Math.abs( t[ 0 ] * R[ 2 ][ 0 ] - t[ 2 ] * R[ 0 ][ 0 ] ) > ra + rb ) return false; | |
// test axis L = A1 x B1 | |
ra = a.e[ 0 ] * AbsR[ 2 ][ 1 ] + a.e[ 2 ] * AbsR[ 0 ][ 1 ]; | |
rb = b.e[ 0 ] * AbsR[ 1 ][ 2 ] + b.e[ 2 ] * AbsR[ 1 ][ 0 ]; | |
if ( Math.abs( t[ 0 ] * R[ 2 ][ 1 ] - t[ 2 ] * R[ 0 ][ 1 ] ) > ra + rb ) return false; | |
// test axis L = A1 x B2 | |
ra = a.e[ 0 ] * AbsR[ 2 ][ 2 ] + a.e[ 2 ] * AbsR[ 0 ][ 2 ]; | |
rb = b.e[ 0 ] * AbsR[ 1 ][ 1 ] + b.e[ 1 ] * AbsR[ 1 ][ 0 ]; | |
if ( Math.abs( t[ 0 ] * R[ 2 ][ 2 ] - t[ 2 ] * R[ 0 ][ 2 ] ) > ra + rb ) return false; | |
// test axis L = A2 x B0 | |
ra = a.e[ 0 ] * AbsR[ 1 ][ 0 ] + a.e[ 1 ] * AbsR[ 0 ][ 0 ]; | |
rb = b.e[ 1 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 1 ]; | |
if ( Math.abs( t[ 1 ] * R[ 0 ][ 0 ] - t[ 0 ] * R[ 1 ][ 0 ] ) > ra + rb ) return false; | |
// test axis L = A2 x B1 | |
ra = a.e[ 0 ] * AbsR[ 1 ][ 1 ] + a.e[ 1 ] * AbsR[ 0 ][ 1 ]; | |
rb = b.e[ 0 ] * AbsR[ 2 ][ 2 ] + b.e[ 2 ] * AbsR[ 2 ][ 0 ]; | |
if ( Math.abs( t[ 1 ] * R[ 0 ][ 1 ] - t[ 0 ] * R[ 1 ][ 1 ] ) > ra + rb ) return false; | |
// test axis L = A2 x B2 | |
ra = a.e[ 0 ] * AbsR[ 1 ][ 2 ] + a.e[ 1 ] * AbsR[ 0 ][ 2 ]; | |
rb = b.e[ 0 ] * AbsR[ 2 ][ 1 ] + b.e[ 1 ] * AbsR[ 2 ][ 0 ]; | |
if ( Math.abs( t[ 1 ] * R[ 0 ][ 2 ] - t[ 0 ] * R[ 1 ][ 2 ] ) > ra + rb ) return false; | |
// since no separating axis is found, the OBBs must be intersecting | |
return true; | |
} | |
/** | |
* Reference: Testing Box Against Plane in Real-Time Collision Detection | |
* by Christer Ericson (chapter 5.2.3) | |
* | |
* @param {Plane} plane | |
* @returns {Boolean} | |
*/ | |
intersectsPlane( plane ) { | |
this.rotation.extractBasis( xAxis, yAxis, zAxis ); | |
// compute the projection interval radius of this OBB onto L(t) = this->center + t * p.normal; | |
const r = this.halfSize.x * Math.abs( plane.normal.dot( xAxis ) ) + | |
this.halfSize.y * Math.abs( plane.normal.dot( yAxis ) ) + | |
this.halfSize.z * Math.abs( plane.normal.dot( zAxis ) ); | |
// compute distance of the OBB's center from the plane | |
const d = plane.normal.dot( this.center ) - plane.constant; | |
// Intersection occurs when distance d falls within [-r,+r] interval | |
return Math.abs( d ) <= r; | |
} | |
/** | |
* Performs a ray/OBB intersection test and stores the intersection point | |
* to the given 3D vector. If no intersection is detected, *null* is returned. | |
* | |
* @param {Ray} ray | |
* @param {Vector3} result | |
* @return {Vector3?} | |
*/ | |
intersectRay( ray, result ) { | |
// the idea is to perform the intersection test in the local space | |
// of the OBB. | |
this.getSize( size ); | |
aabb.setFromCenterAndSize( v1.set( 0, 0, 0 ), size ); | |
// create a 4x4 transformation matrix | |
matrix.setFromMatrix3( this.rotation ); | |
matrix.setPosition( this.center ); | |
// transform ray to the local space of the OBB | |
inverse.copy( matrix ).invert(); | |
localRay.copy( ray ).applyMatrix4( inverse ); | |
// perform ray <-> AABB intersection test | |
if ( localRay.intersectBox( aabb, result ) ) { | |
// transform the intersection point back to world space | |
return result.applyMatrix4( matrix ); | |
} else { | |
return null; | |
} | |
} | |
/** | |
* Performs a ray/OBB intersection test. Returns either true or false if | |
* there is a intersection or not. | |
* | |
* @param {Ray} ray | |
* @returns {Boolean} | |
*/ | |
intersectsRay( ray ) { | |
return this.intersectRay( ray, v1 ) !== null; | |
} | |
fromBox3( box3 ) { | |
box3.getCenter( this.center ); | |
box3.getSize( this.halfSize ).multiplyScalar( 0.5 ); | |
this.rotation.identity(); | |
return this; | |
} | |
equals( obb ) { | |
return obb.center.equals( this.center ) && | |
obb.halfSize.equals( this.halfSize ) && | |
obb.rotation.equals( this.rotation ); | |
} | |
applyMatrix4( matrix ) { | |
const e = matrix.elements; | |
let sx = v1.set( e[ 0 ], e[ 1 ], e[ 2 ] ).length(); | |
const sy = v1.set( e[ 4 ], e[ 5 ], e[ 6 ] ).length(); | |
const sz = v1.set( e[ 8 ], e[ 9 ], e[ 10 ] ).length(); | |
const det = matrix.determinant(); | |
if ( det < 0 ) sx = - sx; | |
rotationMatrix.setFromMatrix4( matrix ); | |
const invSX = 1 / sx; | |
const invSY = 1 / sy; | |
const invSZ = 1 / sz; | |
rotationMatrix.elements[ 0 ] *= invSX; | |
rotationMatrix.elements[ 1 ] *= invSX; | |
rotationMatrix.elements[ 2 ] *= invSX; | |
rotationMatrix.elements[ 3 ] *= invSY; | |
rotationMatrix.elements[ 4 ] *= invSY; | |
rotationMatrix.elements[ 5 ] *= invSY; | |
rotationMatrix.elements[ 6 ] *= invSZ; | |
rotationMatrix.elements[ 7 ] *= invSZ; | |
rotationMatrix.elements[ 8 ] *= invSZ; | |
this.rotation.multiply( rotationMatrix ); | |
this.halfSize.x *= sx; | |
this.halfSize.y *= sy; | |
this.halfSize.z *= sz; | |
v1.setFromMatrixPosition( matrix ); | |
this.center.add( v1 ); | |
return this; | |
} | |
} | |
const obb = new OBB(); | |
export { OBB }; | |