Spaces:
Running
Running
import { | |
Line3, | |
Mesh, | |
Plane, | |
Vector3 | |
} from 'three'; | |
import { ConvexGeometry } from '../geometries/ConvexGeometry.js'; | |
/** | |
* @fileoverview This class can be used to subdivide a convex Geometry object into pieces. | |
* | |
* Usage: | |
* | |
* Use the function prepareBreakableObject to prepare a Mesh object to be broken. | |
* | |
* Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane) | |
* | |
* Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them. | |
* | |
* Requisites for the object: | |
* | |
* - Mesh object must have a buffer geometry and a material | |
* | |
* - Vertex normals must be planar (not smoothed) | |
* | |
* - The geometry must be convex (this is not checked in the library). You can create convex | |
* geometries with ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives | |
* can also be used. | |
* | |
* Note: This lib adds member variables to object's userData member (see prepareBreakableObject function) | |
* Use with caution and read the code when using with other libs. | |
* | |
* @param {double} minSizeForBreak Min size a debris can have to break. | |
* @param {double} smallDelta Max distance to consider that a point belongs to a plane. | |
* | |
*/ | |
const _v1 = new Vector3(); | |
class ConvexObjectBreaker { | |
constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) { | |
this.minSizeForBreak = minSizeForBreak; | |
this.smallDelta = smallDelta; | |
this.tempLine1 = new Line3(); | |
this.tempPlane1 = new Plane(); | |
this.tempPlane2 = new Plane(); | |
this.tempPlane_Cut = new Plane(); | |
this.tempCM1 = new Vector3(); | |
this.tempCM2 = new Vector3(); | |
this.tempVector3 = new Vector3(); | |
this.tempVector3_2 = new Vector3(); | |
this.tempVector3_3 = new Vector3(); | |
this.tempVector3_P0 = new Vector3(); | |
this.tempVector3_P1 = new Vector3(); | |
this.tempVector3_P2 = new Vector3(); | |
this.tempVector3_N0 = new Vector3(); | |
this.tempVector3_N1 = new Vector3(); | |
this.tempVector3_AB = new Vector3(); | |
this.tempVector3_CB = new Vector3(); | |
this.tempResultObjects = { object1: null, object2: null }; | |
this.segments = []; | |
const n = 30 * 30; | |
for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false; | |
} | |
prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) { | |
// object is a Object3d (normally a Mesh), must have a buffer geometry, and it must be convex. | |
// Its material property is propagated to its children (sub-pieces) | |
// mass must be > 0 | |
const userData = object.userData; | |
userData.mass = mass; | |
userData.velocity = velocity.clone(); | |
userData.angularVelocity = angularVelocity.clone(); | |
userData.breakable = breakable; | |
} | |
/* | |
* @param {int} maxRadialIterations Iterations for radial cuts. | |
* @param {int} maxRandomIterations Max random iterations for not-radial cuts | |
* | |
* Returns the array of pieces | |
*/ | |
subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) { | |
const debris = []; | |
const tempPlane1 = this.tempPlane1; | |
const tempPlane2 = this.tempPlane2; | |
this.tempVector3.addVectors( pointOfImpact, normal ); | |
tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 ); | |
const maxTotalIterations = maxRandomIterations + maxRadialIterations; | |
const scope = this; | |
function subdivideRadial( subObject, startAngle, endAngle, numIterations ) { | |
if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) { | |
debris.push( subObject ); | |
return; | |
} | |
let angle = Math.PI; | |
if ( numIterations === 0 ) { | |
tempPlane2.normal.copy( tempPlane1.normal ); | |
tempPlane2.constant = tempPlane1.constant; | |
} else { | |
if ( numIterations <= maxRadialIterations ) { | |
angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle; | |
// Rotate tempPlane2 at impact point around normal axis and the angle | |
scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact ); | |
tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 ); | |
} else { | |
angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI; | |
// Rotate tempPlane2 at object position around normal axis and the angle | |
scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position ); | |
scope.tempVector3_3.copy( normal ).add( subObject.position ); | |
tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 ); | |
} | |
} | |
// Perform the cut | |
scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects ); | |
const obj1 = scope.tempResultObjects.object1; | |
const obj2 = scope.tempResultObjects.object2; | |
if ( obj1 ) { | |
subdivideRadial( obj1, startAngle, angle, numIterations + 1 ); | |
} | |
if ( obj2 ) { | |
subdivideRadial( obj2, angle, endAngle, numIterations + 1 ); | |
} | |
} | |
subdivideRadial( object, 0, 2 * Math.PI, 0 ); | |
return debris; | |
} | |
cutByPlane( object, plane, output ) { | |
// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut. | |
// object2 can be null if the plane doesn't cut the object. | |
// object1 can be null only in case of internal error | |
// Returned value is number of pieces, 0 for error. | |
const geometry = object.geometry; | |
const coords = geometry.attributes.position.array; | |
const normals = geometry.attributes.normal.array; | |
const numPoints = coords.length / 3; | |
let numFaces = numPoints / 3; | |
let indices = geometry.getIndex(); | |
if ( indices ) { | |
indices = indices.array; | |
numFaces = indices.length / 3; | |
} | |
function getVertexIndex( faceIdx, vert ) { | |
// vert = 0, 1 or 2. | |
const idx = faceIdx * 3 + vert; | |
return indices ? indices[ idx ] : idx; | |
} | |
const points1 = []; | |
const points2 = []; | |
const delta = this.smallDelta; | |
// Reset segments mark | |
const numPointPairs = numPoints * numPoints; | |
for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false; | |
const p0 = this.tempVector3_P0; | |
const p1 = this.tempVector3_P1; | |
const n0 = this.tempVector3_N0; | |
const n1 = this.tempVector3_N1; | |
// Iterate through the faces to mark edges shared by coplanar faces | |
for ( let i = 0; i < numFaces - 1; i ++ ) { | |
const a1 = getVertexIndex( i, 0 ); | |
const b1 = getVertexIndex( i, 1 ); | |
const c1 = getVertexIndex( i, 2 ); | |
// Assuming all 3 vertices have the same normal | |
n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 ); | |
for ( let j = i + 1; j < numFaces; j ++ ) { | |
const a2 = getVertexIndex( j, 0 ); | |
const b2 = getVertexIndex( j, 1 ); | |
const c2 = getVertexIndex( j, 2 ); | |
// Assuming all 3 vertices have the same normal | |
n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 ); | |
const coplanar = 1 - n0.dot( n1 ) < delta; | |
if ( coplanar ) { | |
if ( a1 === a2 || a1 === b2 || a1 === c2 ) { | |
if ( b1 === a2 || b1 === b2 || b1 === c2 ) { | |
this.segments[ a1 * numPoints + b1 ] = true; | |
this.segments[ b1 * numPoints + a1 ] = true; | |
} else { | |
this.segments[ c1 * numPoints + a1 ] = true; | |
this.segments[ a1 * numPoints + c1 ] = true; | |
} | |
} else if ( b1 === a2 || b1 === b2 || b1 === c2 ) { | |
this.segments[ c1 * numPoints + b1 ] = true; | |
this.segments[ b1 * numPoints + c1 ] = true; | |
} | |
} | |
} | |
} | |
// Transform the plane to object local space | |
const localPlane = this.tempPlane_Cut; | |
object.updateMatrix(); | |
ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane ); | |
// Iterate through the faces adding points to both pieces | |
for ( let i = 0; i < numFaces; i ++ ) { | |
const va = getVertexIndex( i, 0 ); | |
const vb = getVertexIndex( i, 1 ); | |
const vc = getVertexIndex( i, 2 ); | |
for ( let segment = 0; segment < 3; segment ++ ) { | |
const i0 = segment === 0 ? va : ( segment === 1 ? vb : vc ); | |
const i1 = segment === 0 ? vb : ( segment === 1 ? vc : va ); | |
const segmentState = this.segments[ i0 * numPoints + i1 ]; | |
if ( segmentState ) continue; // The segment already has been processed in another face | |
// Mark segment as processed (also inverted segment) | |
this.segments[ i0 * numPoints + i1 ] = true; | |
this.segments[ i1 * numPoints + i0 ] = true; | |
p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] ); | |
p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] ); | |
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point | |
let mark0 = 0; | |
let d = localPlane.distanceToPoint( p0 ); | |
if ( d > delta ) { | |
mark0 = 2; | |
points2.push( p0.clone() ); | |
} else if ( d < - delta ) { | |
mark0 = 1; | |
points1.push( p0.clone() ); | |
} else { | |
mark0 = 3; | |
points1.push( p0.clone() ); | |
points2.push( p0.clone() ); | |
} | |
// mark: 1 for negative side, 2 for positive side, 3 for coplanar point | |
let mark1 = 0; | |
d = localPlane.distanceToPoint( p1 ); | |
if ( d > delta ) { | |
mark1 = 2; | |
points2.push( p1.clone() ); | |
} else if ( d < - delta ) { | |
mark1 = 1; | |
points1.push( p1.clone() ); | |
} else { | |
mark1 = 3; | |
points1.push( p1.clone() ); | |
points2.push( p1.clone() ); | |
} | |
if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) { | |
// Intersection of segment with the plane | |
this.tempLine1.start.copy( p0 ); | |
this.tempLine1.end.copy( p1 ); | |
let intersection = new Vector3(); | |
intersection = localPlane.intersectLine( this.tempLine1, intersection ); | |
if ( intersection === null ) { | |
// Shouldn't happen | |
console.error( 'Internal error: segment does not intersect plane.' ); | |
output.segmentedObject1 = null; | |
output.segmentedObject2 = null; | |
return 0; | |
} | |
points1.push( intersection ); | |
points2.push( intersection.clone() ); | |
} | |
} | |
} | |
// Calculate debris mass (very fast and imprecise): | |
const newMass = object.userData.mass * 0.5; | |
// Calculate debris Center of Mass (again fast and imprecise) | |
this.tempCM1.set( 0, 0, 0 ); | |
let radius1 = 0; | |
const numPoints1 = points1.length; | |
if ( numPoints1 > 0 ) { | |
for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] ); | |
this.tempCM1.divideScalar( numPoints1 ); | |
for ( let i = 0; i < numPoints1; i ++ ) { | |
const p = points1[ i ]; | |
p.sub( this.tempCM1 ); | |
radius1 = Math.max( radius1, p.x, p.y, p.z ); | |
} | |
this.tempCM1.add( object.position ); | |
} | |
this.tempCM2.set( 0, 0, 0 ); | |
let radius2 = 0; | |
const numPoints2 = points2.length; | |
if ( numPoints2 > 0 ) { | |
for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] ); | |
this.tempCM2.divideScalar( numPoints2 ); | |
for ( let i = 0; i < numPoints2; i ++ ) { | |
const p = points2[ i ]; | |
p.sub( this.tempCM2 ); | |
radius2 = Math.max( radius2, p.x, p.y, p.z ); | |
} | |
this.tempCM2.add( object.position ); | |
} | |
let object1 = null; | |
let object2 = null; | |
let numObjects = 0; | |
if ( numPoints1 > 4 ) { | |
object1 = new Mesh( new ConvexGeometry( points1 ), object.material ); | |
object1.position.copy( this.tempCM1 ); | |
object1.quaternion.copy( object.quaternion ); | |
this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak ); | |
numObjects ++; | |
} | |
if ( numPoints2 > 4 ) { | |
object2 = new Mesh( new ConvexGeometry( points2 ), object.material ); | |
object2.position.copy( this.tempCM2 ); | |
object2.quaternion.copy( object.quaternion ); | |
this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak ); | |
numObjects ++; | |
} | |
output.object1 = object1; | |
output.object2 = object2; | |
return numObjects; | |
} | |
static transformFreeVector( v, m ) { | |
// input: | |
// vector interpreted as a free vector | |
// THREE.Matrix4 orthogonal matrix (matrix without scale) | |
const x = v.x, y = v.y, z = v.z; | |
const e = m.elements; | |
v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; | |
v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; | |
v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; | |
return v; | |
} | |
static transformFreeVectorInverse( v, m ) { | |
// input: | |
// vector interpreted as a free vector | |
// THREE.Matrix4 orthogonal matrix (matrix without scale) | |
const x = v.x, y = v.y, z = v.z; | |
const e = m.elements; | |
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z; | |
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z; | |
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z; | |
return v; | |
} | |
static transformTiedVectorInverse( v, m ) { | |
// input: | |
// vector interpreted as a tied (ordinary) vector | |
// THREE.Matrix4 orthogonal matrix (matrix without scale) | |
const x = v.x, y = v.y, z = v.z; | |
const e = m.elements; | |
v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ]; | |
v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ]; | |
v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ]; | |
return v; | |
} | |
static transformPlaneToLocalSpace( plane, m, resultPlane ) { | |
resultPlane.normal.copy( plane.normal ); | |
resultPlane.constant = plane.constant; | |
const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m ); | |
ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m ); | |
// recalculate constant (like in setFromNormalAndCoplanarPoint) | |
resultPlane.constant = - referencePoint.dot( resultPlane.normal ); | |
} | |
} | |
export { ConvexObjectBreaker }; | |