Spaces:
Running
Running
import { | |
ClampToEdgeWrapping, | |
DataTexture, | |
FloatType, | |
NearestFilter, | |
RGBAFormat, | |
ShaderMaterial, | |
WebGLRenderTarget | |
} from 'three'; | |
import { FullScreenQuad } from '../postprocessing/Pass.js'; | |
/** | |
* GPUComputationRenderer, based on SimulationRenderer by zz85 | |
* | |
* The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats | |
* for each compute element (texel) | |
* | |
* Each variable has a fragment shader that defines the computation made to obtain the variable in question. | |
* You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader | |
* (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency. | |
* | |
* The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used | |
* as inputs to render the textures of the next frame. | |
* | |
* The render targets of the variables can be used as input textures for your visualization shaders. | |
* | |
* Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers. | |
* a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity... | |
* | |
* The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example: | |
* #DEFINE resolution vec2( 1024.0, 1024.0 ) | |
* | |
* ------------- | |
* | |
* Basic use: | |
* | |
* // Initialization... | |
* | |
* // Create computation renderer | |
* const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer ); | |
* | |
* // Create initial state float textures | |
* const pos0 = gpuCompute.createTexture(); | |
* const vel0 = gpuCompute.createTexture(); | |
* // and fill in here the texture data... | |
* | |
* // Add texture variables | |
* const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, vel0 ); | |
* const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, pos0 ); | |
* | |
* // Add variable dependencies | |
* gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] ); | |
* gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] ); | |
* | |
* // Add custom uniforms | |
* velVar.material.uniforms.time = { value: 0.0 }; | |
* | |
* // Check for completeness | |
* const error = gpuCompute.init(); | |
* if ( error !== null ) { | |
* console.error( error ); | |
* } | |
* | |
* | |
* // In each frame... | |
* | |
* // Compute! | |
* gpuCompute.compute(); | |
* | |
* // Update texture uniforms in your visualization materials with the gpu renderer output | |
* myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture; | |
* | |
* // Do your rendering | |
* renderer.render( myScene, myCamera ); | |
* | |
* ------------- | |
* | |
* Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures) | |
* Note that the shaders can have multiple input textures. | |
* | |
* const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } ); | |
* const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } ); | |
* | |
* const inputTexture = gpuCompute.createTexture(); | |
* | |
* // Fill in here inputTexture... | |
* | |
* myFilter1.uniforms.theTexture.value = inputTexture; | |
* | |
* const myRenderTarget = gpuCompute.createRenderTarget(); | |
* myFilter2.uniforms.theTexture.value = myRenderTarget.texture; | |
* | |
* const outputRenderTarget = gpuCompute.createRenderTarget(); | |
* | |
* // Now use the output texture where you want: | |
* myMaterial.uniforms.map.value = outputRenderTarget.texture; | |
* | |
* // And compute each frame, before rendering to screen: | |
* gpuCompute.doRenderTarget( myFilter1, myRenderTarget ); | |
* gpuCompute.doRenderTarget( myFilter2, outputRenderTarget ); | |
* | |
* | |
* | |
* @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements. | |
* @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements. | |
* @param {WebGLRenderer} renderer The renderer | |
*/ | |
class GPUComputationRenderer { | |
constructor( sizeX, sizeY, renderer ) { | |
this.variables = []; | |
this.currentTextureIndex = 0; | |
let dataType = FloatType; | |
const passThruUniforms = { | |
passThruTexture: { value: null } | |
}; | |
const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms ); | |
const quad = new FullScreenQuad( passThruShader ); | |
this.setDataType = function ( type ) { | |
dataType = type; | |
return this; | |
}; | |
this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) { | |
const material = this.createShaderMaterial( computeFragmentShader ); | |
const variable = { | |
name: variableName, | |
initialValueTexture: initialValueTexture, | |
material: material, | |
dependencies: null, | |
renderTargets: [], | |
wrapS: null, | |
wrapT: null, | |
minFilter: NearestFilter, | |
magFilter: NearestFilter | |
}; | |
this.variables.push( variable ); | |
return variable; | |
}; | |
this.setVariableDependencies = function ( variable, dependencies ) { | |
variable.dependencies = dependencies; | |
}; | |
this.init = function () { | |
if ( renderer.capabilities.maxVertexTextures === 0 ) { | |
return 'No support for vertex shader textures.'; | |
} | |
for ( let i = 0; i < this.variables.length; i ++ ) { | |
const variable = this.variables[ i ]; | |
// Creates rendertargets and initialize them with input texture | |
variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter ); | |
variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter ); | |
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] ); | |
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] ); | |
// Adds dependencies uniforms to the ShaderMaterial | |
const material = variable.material; | |
const uniforms = material.uniforms; | |
if ( variable.dependencies !== null ) { | |
for ( let d = 0; d < variable.dependencies.length; d ++ ) { | |
const depVar = variable.dependencies[ d ]; | |
if ( depVar.name !== variable.name ) { | |
// Checks if variable exists | |
let found = false; | |
for ( let j = 0; j < this.variables.length; j ++ ) { | |
if ( depVar.name === this.variables[ j ].name ) { | |
found = true; | |
break; | |
} | |
} | |
if ( ! found ) { | |
return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name; | |
} | |
} | |
uniforms[ depVar.name ] = { value: null }; | |
material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader; | |
} | |
} | |
} | |
this.currentTextureIndex = 0; | |
return null; | |
}; | |
this.compute = function () { | |
const currentTextureIndex = this.currentTextureIndex; | |
const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0; | |
for ( let i = 0, il = this.variables.length; i < il; i ++ ) { | |
const variable = this.variables[ i ]; | |
// Sets texture dependencies uniforms | |
if ( variable.dependencies !== null ) { | |
const uniforms = variable.material.uniforms; | |
for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) { | |
const depVar = variable.dependencies[ d ]; | |
uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture; | |
} | |
} | |
// Performs the computation for this variable | |
this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] ); | |
} | |
this.currentTextureIndex = nextTextureIndex; | |
}; | |
this.getCurrentRenderTarget = function ( variable ) { | |
return variable.renderTargets[ this.currentTextureIndex ]; | |
}; | |
this.getAlternateRenderTarget = function ( variable ) { | |
return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ]; | |
}; | |
this.dispose = function () { | |
quad.dispose(); | |
const variables = this.variables; | |
for ( let i = 0; i < variables.length; i ++ ) { | |
const variable = variables[ i ]; | |
if ( variable.initialValueTexture ) variable.initialValueTexture.dispose(); | |
const renderTargets = variable.renderTargets; | |
for ( let j = 0; j < renderTargets.length; j ++ ) { | |
const renderTarget = renderTargets[ j ]; | |
renderTarget.dispose(); | |
} | |
} | |
}; | |
function addResolutionDefine( materialShader ) { | |
materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )'; | |
} | |
this.addResolutionDefine = addResolutionDefine; | |
// The following functions can be used to compute things manually | |
function createShaderMaterial( computeFragmentShader, uniforms ) { | |
uniforms = uniforms || {}; | |
const material = new ShaderMaterial( { | |
name: 'GPUComputationShader', | |
uniforms: uniforms, | |
vertexShader: getPassThroughVertexShader(), | |
fragmentShader: computeFragmentShader | |
} ); | |
addResolutionDefine( material ); | |
return material; | |
} | |
this.createShaderMaterial = createShaderMaterial; | |
this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) { | |
sizeXTexture = sizeXTexture || sizeX; | |
sizeYTexture = sizeYTexture || sizeY; | |
wrapS = wrapS || ClampToEdgeWrapping; | |
wrapT = wrapT || ClampToEdgeWrapping; | |
minFilter = minFilter || NearestFilter; | |
magFilter = magFilter || NearestFilter; | |
const renderTarget = new WebGLRenderTarget( sizeXTexture, sizeYTexture, { | |
wrapS: wrapS, | |
wrapT: wrapT, | |
minFilter: minFilter, | |
magFilter: magFilter, | |
format: RGBAFormat, | |
type: dataType, | |
depthBuffer: false | |
} ); | |
return renderTarget; | |
}; | |
this.createTexture = function () { | |
const data = new Float32Array( sizeX * sizeY * 4 ); | |
const texture = new DataTexture( data, sizeX, sizeY, RGBAFormat, FloatType ); | |
texture.needsUpdate = true; | |
return texture; | |
}; | |
this.renderTexture = function ( input, output ) { | |
// Takes a texture, and render out in rendertarget | |
// input = Texture | |
// output = RenderTarget | |
passThruUniforms.passThruTexture.value = input; | |
this.doRenderTarget( passThruShader, output ); | |
passThruUniforms.passThruTexture.value = null; | |
}; | |
this.doRenderTarget = function ( material, output ) { | |
const currentRenderTarget = renderer.getRenderTarget(); | |
const currentXrEnabled = renderer.xr.enabled; | |
const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate; | |
renderer.xr.enabled = false; // Avoid camera modification | |
renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows | |
quad.material = material; | |
renderer.setRenderTarget( output ); | |
quad.render( renderer ); | |
quad.material = passThruShader; | |
renderer.xr.enabled = currentXrEnabled; | |
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate; | |
renderer.setRenderTarget( currentRenderTarget ); | |
}; | |
// Shaders | |
function getPassThroughVertexShader() { | |
return 'void main() {\n' + | |
'\n' + | |
' gl_Position = vec4( position, 1.0 );\n' + | |
'\n' + | |
'}\n'; | |
} | |
function getPassThroughFragmentShader() { | |
return 'uniform sampler2D passThruTexture;\n' + | |
'\n' + | |
'void main() {\n' + | |
'\n' + | |
' vec2 uv = gl_FragCoord.xy / resolution.xy;\n' + | |
'\n' + | |
' gl_FragColor = texture2D( passThruTexture, uv );\n' + | |
'\n' + | |
'}\n'; | |
} | |
} | |
} | |
export { GPUComputationRenderer }; | |