Spaces:
Running
Running
import { | |
Clock, | |
Color, | |
Matrix4, | |
Mesh, | |
RepeatWrapping, | |
ShaderMaterial, | |
TextureLoader, | |
UniformsLib, | |
UniformsUtils, | |
Vector2, | |
Vector4 | |
} from 'three'; | |
import { Reflector } from '../objects/Reflector.js'; | |
import { Refractor } from '../objects/Refractor.js'; | |
/** | |
* References: | |
* https://alex.vlachos.com/graphics/Vlachos-SIGGRAPH10-WaterFlow.pdf | |
* http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html | |
* | |
*/ | |
class Water extends Mesh { | |
constructor( geometry, options = {} ) { | |
super( geometry ); | |
this.isWater = true; | |
this.type = 'Water'; | |
const scope = this; | |
const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0xFFFFFF ); | |
const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512; | |
const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512; | |
const clipBias = options.clipBias !== undefined ? options.clipBias : 0; | |
const flowDirection = options.flowDirection !== undefined ? options.flowDirection : new Vector2( 1, 0 ); | |
const flowSpeed = options.flowSpeed !== undefined ? options.flowSpeed : 0.03; | |
const reflectivity = options.reflectivity !== undefined ? options.reflectivity : 0.02; | |
const scale = options.scale !== undefined ? options.scale : 1; | |
const shader = options.shader !== undefined ? options.shader : Water.WaterShader; | |
const textureLoader = new TextureLoader(); | |
const flowMap = options.flowMap || undefined; | |
const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' ); | |
const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' ); | |
const cycle = 0.15; // a cycle of a flow map phase | |
const halfCycle = cycle * 0.5; | |
const textureMatrix = new Matrix4(); | |
const clock = new Clock(); | |
// internal components | |
if ( Reflector === undefined ) { | |
console.error( 'THREE.Water: Required component Reflector not found.' ); | |
return; | |
} | |
if ( Refractor === undefined ) { | |
console.error( 'THREE.Water: Required component Refractor not found.' ); | |
return; | |
} | |
const reflector = new Reflector( geometry, { | |
textureWidth: textureWidth, | |
textureHeight: textureHeight, | |
clipBias: clipBias | |
} ); | |
const refractor = new Refractor( geometry, { | |
textureWidth: textureWidth, | |
textureHeight: textureHeight, | |
clipBias: clipBias | |
} ); | |
reflector.matrixAutoUpdate = false; | |
refractor.matrixAutoUpdate = false; | |
// material | |
this.material = new ShaderMaterial( { | |
name: shader.name, | |
uniforms: UniformsUtils.merge( [ | |
UniformsLib[ 'fog' ], | |
shader.uniforms | |
] ), | |
vertexShader: shader.vertexShader, | |
fragmentShader: shader.fragmentShader, | |
transparent: true, | |
fog: true | |
} ); | |
if ( flowMap !== undefined ) { | |
this.material.defines.USE_FLOWMAP = ''; | |
this.material.uniforms[ 'tFlowMap' ] = { | |
type: 't', | |
value: flowMap | |
}; | |
} else { | |
this.material.uniforms[ 'flowDirection' ] = { | |
type: 'v2', | |
value: flowDirection | |
}; | |
} | |
// maps | |
normalMap0.wrapS = normalMap0.wrapT = RepeatWrapping; | |
normalMap1.wrapS = normalMap1.wrapT = RepeatWrapping; | |
this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture; | |
this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture; | |
this.material.uniforms[ 'tNormalMap0' ].value = normalMap0; | |
this.material.uniforms[ 'tNormalMap1' ].value = normalMap1; | |
// water | |
this.material.uniforms[ 'color' ].value = color; | |
this.material.uniforms[ 'reflectivity' ].value = reflectivity; | |
this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; | |
// initial values | |
this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0 | |
this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1 | |
this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle | |
this.material.uniforms[ 'config' ].value.w = scale; // scale | |
// functions | |
function updateTextureMatrix( camera ) { | |
textureMatrix.set( | |
0.5, 0.0, 0.0, 0.5, | |
0.0, 0.5, 0.0, 0.5, | |
0.0, 0.0, 0.5, 0.5, | |
0.0, 0.0, 0.0, 1.0 | |
); | |
textureMatrix.multiply( camera.projectionMatrix ); | |
textureMatrix.multiply( camera.matrixWorldInverse ); | |
textureMatrix.multiply( scope.matrixWorld ); | |
} | |
function updateFlow() { | |
const delta = clock.getDelta(); | |
const config = scope.material.uniforms[ 'config' ]; | |
config.value.x += flowSpeed * delta; // flowMapOffset0 | |
config.value.y = config.value.x + halfCycle; // flowMapOffset1 | |
// Important: The distance between offsets should be always the value of "halfCycle". | |
// Moreover, both offsets should be in the range of [ 0, cycle ]. | |
// This approach ensures a smooth water flow and avoids "reset" effects. | |
if ( config.value.x >= cycle ) { | |
config.value.x = 0; | |
config.value.y = halfCycle; | |
} else if ( config.value.y >= cycle ) { | |
config.value.y = config.value.y - cycle; | |
} | |
} | |
// | |
this.onBeforeRender = function ( renderer, scene, camera ) { | |
updateTextureMatrix( camera ); | |
updateFlow(); | |
scope.visible = false; | |
reflector.matrixWorld.copy( scope.matrixWorld ); | |
refractor.matrixWorld.copy( scope.matrixWorld ); | |
reflector.onBeforeRender( renderer, scene, camera ); | |
refractor.onBeforeRender( renderer, scene, camera ); | |
scope.visible = true; | |
}; | |
} | |
} | |
Water.WaterShader = { | |
name: 'WaterShader', | |
uniforms: { | |
'color': { | |
type: 'c', | |
value: null | |
}, | |
'reflectivity': { | |
type: 'f', | |
value: 0 | |
}, | |
'tReflectionMap': { | |
type: 't', | |
value: null | |
}, | |
'tRefractionMap': { | |
type: 't', | |
value: null | |
}, | |
'tNormalMap0': { | |
type: 't', | |
value: null | |
}, | |
'tNormalMap1': { | |
type: 't', | |
value: null | |
}, | |
'textureMatrix': { | |
type: 'm4', | |
value: null | |
}, | |
'config': { | |
type: 'v4', | |
value: new Vector4() | |
} | |
}, | |
vertexShader: /* glsl */` | |
#include <common> | |
#include <fog_pars_vertex> | |
#include <logdepthbuf_pars_vertex> | |
uniform mat4 textureMatrix; | |
varying vec4 vCoord; | |
varying vec2 vUv; | |
varying vec3 vToEye; | |
void main() { | |
vUv = uv; | |
vCoord = textureMatrix * vec4( position, 1.0 ); | |
vec4 worldPosition = modelMatrix * vec4( position, 1.0 ); | |
vToEye = cameraPosition - worldPosition.xyz; | |
vec4 mvPosition = viewMatrix * worldPosition; // used in fog_vertex | |
gl_Position = projectionMatrix * mvPosition; | |
#include <logdepthbuf_vertex> | |
#include <fog_vertex> | |
}`, | |
fragmentShader: /* glsl */` | |
#include <common> | |
#include <fog_pars_fragment> | |
#include <logdepthbuf_pars_fragment> | |
uniform sampler2D tReflectionMap; | |
uniform sampler2D tRefractionMap; | |
uniform sampler2D tNormalMap0; | |
uniform sampler2D tNormalMap1; | |
#ifdef USE_FLOWMAP | |
uniform sampler2D tFlowMap; | |
#else | |
uniform vec2 flowDirection; | |
#endif | |
uniform vec3 color; | |
uniform float reflectivity; | |
uniform vec4 config; | |
varying vec4 vCoord; | |
varying vec2 vUv; | |
varying vec3 vToEye; | |
void main() { | |
#include <logdepthbuf_fragment> | |
float flowMapOffset0 = config.x; | |
float flowMapOffset1 = config.y; | |
float halfCycle = config.z; | |
float scale = config.w; | |
vec3 toEye = normalize( vToEye ); | |
// determine flow direction | |
vec2 flow; | |
#ifdef USE_FLOWMAP | |
flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0; | |
#else | |
flow = flowDirection; | |
#endif | |
flow.x *= - 1.0; | |
// sample normal maps (distort uvs with flowdata) | |
vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 ); | |
vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 ); | |
// linear interpolate to get the final normal color | |
float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle; | |
vec4 normalColor = mix( normalColor0, normalColor1, flowLerp ); | |
// calculate normal vector | |
vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b, normalColor.g * 2.0 - 1.0 ) ); | |
// calculate the fresnel term to blend reflection and refraction maps | |
float theta = max( dot( toEye, normal ), 0.0 ); | |
float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 ); | |
// calculate final uv coords | |
vec3 coord = vCoord.xyz / vCoord.w; | |
vec2 uv = coord.xy + coord.z * normal.xz * 0.05; | |
vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) ); | |
vec4 refractColor = texture2D( tRefractionMap, uv ); | |
// multiply water color with the mix of both textures | |
gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance ); | |
#include <tonemapping_fragment> | |
#include <colorspace_fragment> | |
#include <fog_fragment> | |
}` | |
}; | |
export { Water }; | |