Spaces:
Running
Running
/** | |
* RGB Halftone shader for three.js. | |
* NOTE: | |
* Shape (1 = Dot, 2 = Ellipse, 3 = Line, 4 = Square) | |
* Blending Mode (1 = Linear, 2 = Multiply, 3 = Add, 4 = Lighter, 5 = Darker) | |
*/ | |
const HalftoneShader = { | |
name: 'HalftoneShader', | |
uniforms: { | |
'tDiffuse': { value: null }, | |
'shape': { value: 1 }, | |
'radius': { value: 4 }, | |
'rotateR': { value: Math.PI / 12 * 1 }, | |
'rotateG': { value: Math.PI / 12 * 2 }, | |
'rotateB': { value: Math.PI / 12 * 3 }, | |
'scatter': { value: 0 }, | |
'width': { value: 1 }, | |
'height': { value: 1 }, | |
'blending': { value: 1 }, | |
'blendingMode': { value: 1 }, | |
'greyscale': { value: false }, | |
'disable': { value: false } | |
}, | |
vertexShader: /* glsl */` | |
varying vec2 vUV; | |
void main() { | |
vUV = uv; | |
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0); | |
}`, | |
fragmentShader: /* glsl */` | |
#define SQRT2_MINUS_ONE 0.41421356 | |
#define SQRT2_HALF_MINUS_ONE 0.20710678 | |
#define PI2 6.28318531 | |
#define SHAPE_DOT 1 | |
#define SHAPE_ELLIPSE 2 | |
#define SHAPE_LINE 3 | |
#define SHAPE_SQUARE 4 | |
#define BLENDING_LINEAR 1 | |
#define BLENDING_MULTIPLY 2 | |
#define BLENDING_ADD 3 | |
#define BLENDING_LIGHTER 4 | |
#define BLENDING_DARKER 5 | |
uniform sampler2D tDiffuse; | |
uniform float radius; | |
uniform float rotateR; | |
uniform float rotateG; | |
uniform float rotateB; | |
uniform float scatter; | |
uniform float width; | |
uniform float height; | |
uniform int shape; | |
uniform bool disable; | |
uniform float blending; | |
uniform int blendingMode; | |
varying vec2 vUV; | |
uniform bool greyscale; | |
const int samples = 8; | |
float blend( float a, float b, float t ) { | |
// linear blend | |
return a * ( 1.0 - t ) + b * t; | |
} | |
float hypot( float x, float y ) { | |
// vector magnitude | |
return sqrt( x * x + y * y ); | |
} | |
float rand( vec2 seed ){ | |
// get pseudo-random number | |
return fract( sin( dot( seed.xy, vec2( 12.9898, 78.233 ) ) ) * 43758.5453 ); | |
} | |
float distanceToDotRadius( float channel, vec2 coord, vec2 normal, vec2 p, float angle, float rad_max ) { | |
// apply shape-specific transforms | |
float dist = hypot( coord.x - p.x, coord.y - p.y ); | |
float rad = channel; | |
if ( shape == SHAPE_DOT ) { | |
rad = pow( abs( rad ), 1.125 ) * rad_max; | |
} else if ( shape == SHAPE_ELLIPSE ) { | |
rad = pow( abs( rad ), 1.125 ) * rad_max; | |
if ( dist != 0.0 ) { | |
float dot_p = abs( ( p.x - coord.x ) / dist * normal.x + ( p.y - coord.y ) / dist * normal.y ); | |
dist = ( dist * ( 1.0 - SQRT2_HALF_MINUS_ONE ) ) + dot_p * dist * SQRT2_MINUS_ONE; | |
} | |
} else if ( shape == SHAPE_LINE ) { | |
rad = pow( abs( rad ), 1.5) * rad_max; | |
float dot_p = ( p.x - coord.x ) * normal.x + ( p.y - coord.y ) * normal.y; | |
dist = hypot( normal.x * dot_p, normal.y * dot_p ); | |
} else if ( shape == SHAPE_SQUARE ) { | |
float theta = atan( p.y - coord.y, p.x - coord.x ) - angle; | |
float sin_t = abs( sin( theta ) ); | |
float cos_t = abs( cos( theta ) ); | |
rad = pow( abs( rad ), 1.4 ); | |
rad = rad_max * ( rad + ( ( sin_t > cos_t ) ? rad - sin_t * rad : rad - cos_t * rad ) ); | |
} | |
return rad - dist; | |
} | |
struct Cell { | |
// grid sample positions | |
vec2 normal; | |
vec2 p1; | |
vec2 p2; | |
vec2 p3; | |
vec2 p4; | |
float samp2; | |
float samp1; | |
float samp3; | |
float samp4; | |
}; | |
vec4 getSample( vec2 point ) { | |
// multi-sampled point | |
vec4 tex = texture2D( tDiffuse, vec2( point.x / width, point.y / height ) ); | |
float base = rand( vec2( floor( point.x ), floor( point.y ) ) ) * PI2; | |
float step = PI2 / float( samples ); | |
float dist = radius * 0.66; | |
for ( int i = 0; i < samples; ++i ) { | |
float r = base + step * float( i ); | |
vec2 coord = point + vec2( cos( r ) * dist, sin( r ) * dist ); | |
tex += texture2D( tDiffuse, vec2( coord.x / width, coord.y / height ) ); | |
} | |
tex /= float( samples ) + 1.0; | |
return tex; | |
} | |
float getDotColour( Cell c, vec2 p, int channel, float angle, float aa ) { | |
// get colour for given point | |
float dist_c_1, dist_c_2, dist_c_3, dist_c_4, res; | |
if ( channel == 0 ) { | |
c.samp1 = getSample( c.p1 ).r; | |
c.samp2 = getSample( c.p2 ).r; | |
c.samp3 = getSample( c.p3 ).r; | |
c.samp4 = getSample( c.p4 ).r; | |
} else if (channel == 1) { | |
c.samp1 = getSample( c.p1 ).g; | |
c.samp2 = getSample( c.p2 ).g; | |
c.samp3 = getSample( c.p3 ).g; | |
c.samp4 = getSample( c.p4 ).g; | |
} else { | |
c.samp1 = getSample( c.p1 ).b; | |
c.samp3 = getSample( c.p3 ).b; | |
c.samp2 = getSample( c.p2 ).b; | |
c.samp4 = getSample( c.p4 ).b; | |
} | |
dist_c_1 = distanceToDotRadius( c.samp1, c.p1, c.normal, p, angle, radius ); | |
dist_c_2 = distanceToDotRadius( c.samp2, c.p2, c.normal, p, angle, radius ); | |
dist_c_3 = distanceToDotRadius( c.samp3, c.p3, c.normal, p, angle, radius ); | |
dist_c_4 = distanceToDotRadius( c.samp4, c.p4, c.normal, p, angle, radius ); | |
res = ( dist_c_1 > 0.0 ) ? clamp( dist_c_1 / aa, 0.0, 1.0 ) : 0.0; | |
res += ( dist_c_2 > 0.0 ) ? clamp( dist_c_2 / aa, 0.0, 1.0 ) : 0.0; | |
res += ( dist_c_3 > 0.0 ) ? clamp( dist_c_3 / aa, 0.0, 1.0 ) : 0.0; | |
res += ( dist_c_4 > 0.0 ) ? clamp( dist_c_4 / aa, 0.0, 1.0 ) : 0.0; | |
res = clamp( res, 0.0, 1.0 ); | |
return res; | |
} | |
Cell getReferenceCell( vec2 p, vec2 origin, float grid_angle, float step ) { | |
// get containing cell | |
Cell c; | |
// calc grid | |
vec2 n = vec2( cos( grid_angle ), sin( grid_angle ) ); | |
float threshold = step * 0.5; | |
float dot_normal = n.x * ( p.x - origin.x ) + n.y * ( p.y - origin.y ); | |
float dot_line = -n.y * ( p.x - origin.x ) + n.x * ( p.y - origin.y ); | |
vec2 offset = vec2( n.x * dot_normal, n.y * dot_normal ); | |
float offset_normal = mod( hypot( offset.x, offset.y ), step ); | |
float normal_dir = ( dot_normal < 0.0 ) ? 1.0 : -1.0; | |
float normal_scale = ( ( offset_normal < threshold ) ? -offset_normal : step - offset_normal ) * normal_dir; | |
float offset_line = mod( hypot( ( p.x - offset.x ) - origin.x, ( p.y - offset.y ) - origin.y ), step ); | |
float line_dir = ( dot_line < 0.0 ) ? 1.0 : -1.0; | |
float line_scale = ( ( offset_line < threshold ) ? -offset_line : step - offset_line ) * line_dir; | |
// get closest corner | |
c.normal = n; | |
c.p1.x = p.x - n.x * normal_scale + n.y * line_scale; | |
c.p1.y = p.y - n.y * normal_scale - n.x * line_scale; | |
// scatter | |
if ( scatter != 0.0 ) { | |
float off_mag = scatter * threshold * 0.5; | |
float off_angle = rand( vec2( floor( c.p1.x ), floor( c.p1.y ) ) ) * PI2; | |
c.p1.x += cos( off_angle ) * off_mag; | |
c.p1.y += sin( off_angle ) * off_mag; | |
} | |
// find corners | |
float normal_step = normal_dir * ( ( offset_normal < threshold ) ? step : -step ); | |
float line_step = line_dir * ( ( offset_line < threshold ) ? step : -step ); | |
c.p2.x = c.p1.x - n.x * normal_step; | |
c.p2.y = c.p1.y - n.y * normal_step; | |
c.p3.x = c.p1.x + n.y * line_step; | |
c.p3.y = c.p1.y - n.x * line_step; | |
c.p4.x = c.p1.x - n.x * normal_step + n.y * line_step; | |
c.p4.y = c.p1.y - n.y * normal_step - n.x * line_step; | |
return c; | |
} | |
float blendColour( float a, float b, float t ) { | |
// blend colours | |
if ( blendingMode == BLENDING_LINEAR ) { | |
return blend( a, b, 1.0 - t ); | |
} else if ( blendingMode == BLENDING_ADD ) { | |
return blend( a, min( 1.0, a + b ), t ); | |
} else if ( blendingMode == BLENDING_MULTIPLY ) { | |
return blend( a, max( 0.0, a * b ), t ); | |
} else if ( blendingMode == BLENDING_LIGHTER ) { | |
return blend( a, max( a, b ), t ); | |
} else if ( blendingMode == BLENDING_DARKER ) { | |
return blend( a, min( a, b ), t ); | |
} else { | |
return blend( a, b, 1.0 - t ); | |
} | |
} | |
void main() { | |
if ( ! disable ) { | |
// setup | |
vec2 p = vec2( vUV.x * width, vUV.y * height ); | |
vec2 origin = vec2( 0, 0 ); | |
float aa = ( radius < 2.5 ) ? radius * 0.5 : 1.25; | |
// get channel samples | |
Cell cell_r = getReferenceCell( p, origin, rotateR, radius ); | |
Cell cell_g = getReferenceCell( p, origin, rotateG, radius ); | |
Cell cell_b = getReferenceCell( p, origin, rotateB, radius ); | |
float r = getDotColour( cell_r, p, 0, rotateR, aa ); | |
float g = getDotColour( cell_g, p, 1, rotateG, aa ); | |
float b = getDotColour( cell_b, p, 2, rotateB, aa ); | |
// blend with original | |
vec4 colour = texture2D( tDiffuse, vUV ); | |
r = blendColour( r, colour.r, blending ); | |
g = blendColour( g, colour.g, blending ); | |
b = blendColour( b, colour.b, blending ); | |
if ( greyscale ) { | |
r = g = b = (r + b + g) / 3.0; | |
} | |
gl_FragColor = vec4( r, g, b, 1.0 ); | |
} else { | |
gl_FragColor = texture2D( tDiffuse, vUV ); | |
} | |
}` | |
}; | |
export { HalftoneShader }; | |