Spaces:
Running
Running
import { Vector3 } from 'three'; | |
/** | |
* Generates 2D-Coordinates in a very fast way. | |
* | |
* Based on work by: | |
* @link http://www.openprocessing.org/sketch/15493 | |
* | |
* @param {Vector3} center - Center of Hilbert curve. | |
* @param {number} [size=10] - Total width of Hilbert curve. | |
* @param {number} [iterations=10] - Number of subdivisions. | |
* @param {number} [v0=0] - Corner index -X, -Z. | |
* @param {number} [v1=1] - Corner index -X, +Z. | |
* @param {number} [v2=2] - Corner index +X, +Z. | |
* @param {number} [v3=3] - Corner index +X, -Z. | |
* @returns {Array<Array<number>>} The Hilbert curve points. | |
*/ | |
function hilbert2D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) { | |
const half = size / 2; | |
const vec_s = [ | |
new Vector3( center.x - half, center.y, center.z - half ), | |
new Vector3( center.x - half, center.y, center.z + half ), | |
new Vector3( center.x + half, center.y, center.z + half ), | |
new Vector3( center.x + half, center.y, center.z - half ) | |
]; | |
const vec = [ | |
vec_s[ v0 ], | |
vec_s[ v1 ], | |
vec_s[ v2 ], | |
vec_s[ v3 ] | |
]; | |
// Recurse iterations | |
if ( 0 <= -- iterations ) { | |
return [ | |
...hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ), | |
...hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ), | |
...hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ), | |
...hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) | |
]; | |
} | |
// Return complete Hilbert Curve. | |
return vec; | |
} | |
/** | |
* Generates 3D-Coordinates in a very fast way. | |
* | |
* Based on work by: | |
* @link https://openprocessing.org/user/5654 | |
* | |
* @param {Vector3} [center=new Vector3( 0, 0, 0 )] - Center of Hilbert curve. | |
* @param {number} [size=10] - Total width of Hilbert curve. | |
* @param {number} [iterations=1] - Number of subdivisions. | |
* @param {number} [v0=0] - Corner index -X, +Y, -Z. | |
* @param {number} [v1=1] - Corner index -X, +Y, +Z. | |
* @param {number} [v2=2] - Corner index -X, -Y, +Z. | |
* @param {number} [v3=3] - Corner index -X, -Y, -Z. | |
* @param {number} [v4=4] - Corner index +X, -Y, -Z. | |
* @param {number} [v5=5] - Corner index +X, -Y, +Z. | |
* @param {number} [v6=6] - Corner index +X, +Y, +Z. | |
* @param {number} [v7=7] - Corner index +X, +Y, -Z. | |
* @returns {Array<Array<number>>} - The Hilbert curve points. | |
*/ | |
function hilbert3D( center = new Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) { | |
// Default Vars | |
const half = size / 2; | |
const vec_s = [ | |
new Vector3( center.x - half, center.y + half, center.z - half ), | |
new Vector3( center.x - half, center.y + half, center.z + half ), | |
new Vector3( center.x - half, center.y - half, center.z + half ), | |
new Vector3( center.x - half, center.y - half, center.z - half ), | |
new Vector3( center.x + half, center.y - half, center.z - half ), | |
new Vector3( center.x + half, center.y - half, center.z + half ), | |
new Vector3( center.x + half, center.y + half, center.z + half ), | |
new Vector3( center.x + half, center.y + half, center.z - half ) | |
]; | |
const vec = [ | |
vec_s[ v0 ], | |
vec_s[ v1 ], | |
vec_s[ v2 ], | |
vec_s[ v3 ], | |
vec_s[ v4 ], | |
vec_s[ v5 ], | |
vec_s[ v6 ], | |
vec_s[ v7 ] | |
]; | |
// Recurse iterations | |
if ( -- iterations >= 0 ) { | |
return [ | |
...hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ), | |
...hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ), | |
...hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ), | |
...hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ), | |
...hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ), | |
...hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ), | |
...hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ), | |
...hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) | |
]; | |
} | |
// Return complete Hilbert Curve. | |
return vec; | |
} | |
/** | |
* Generates a Gosper curve (lying in the XY plane) | |
* | |
* https://gist.github.com/nitaku/6521802 | |
* | |
* @param {number} [size=1] - The size of a single gosper island. | |
* @return {Array<[number, number, number]>} The gosper island points. | |
*/ | |
function gosper( size = 1 ) { | |
function fractalize( config ) { | |
let output; | |
let input = config.axiom; | |
for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) { | |
output = ''; | |
for ( let j = 0, jl = input.length; j < jl; j ++ ) { | |
const char = input[ j ]; | |
if ( char in config.rules ) { | |
output += config.rules[ char ]; | |
} else { | |
output += char; | |
} | |
} | |
input = output; | |
} | |
return output; | |
} | |
function toPoints( config ) { | |
let currX = 0, currY = 0; | |
let angle = 0; | |
const path = [ 0, 0, 0 ]; | |
const fractal = config.fractal; | |
for ( let i = 0, l = fractal.length; i < l; i ++ ) { | |
const char = fractal[ i ]; | |
if ( char === '+' ) { | |
angle += config.angle; | |
} else if ( char === '-' ) { | |
angle -= config.angle; | |
} else if ( char === 'F' ) { | |
currX += config.size * Math.cos( angle ); | |
currY += - config.size * Math.sin( angle ); | |
path.push( currX, currY, 0 ); | |
} | |
} | |
return path; | |
} | |
// | |
const gosper = fractalize( { | |
axiom: 'A', | |
steps: 4, | |
rules: { | |
A: 'A+BF++BF-FA--FAFA-BF+', | |
B: '-FA+BFBF++BF+FA--FA-B' | |
} | |
} ); | |
const points = toPoints( { | |
fractal: gosper, | |
size: size, | |
angle: Math.PI / 3 // 60 degrees | |
} ); | |
return points; | |
} | |
export { | |
hilbert2D, | |
hilbert3D, | |
gosper, | |
}; | |