Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,338 Bytes
6a2e106 71a97a8 6a2e106 71a97a8 6a2e106 71a97a8 6a2e106 71a97a8 6a2e106 ce62d44 6a2e106 71a97a8 ce62d44 6a2e106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import { VideoGenerationParams } from "../../types.mts"
import { generateSeed } from "../../utils/misc/generateSeed.mts"
import { tryApiCalls } from "../../utils/misc/tryApiCall.mts"
import { addBase64HeaderToMp4 } from "./addBase64HeaderToMp4.mts"
import { getNegativePrompt, getPositivePrompt } from "./defaultPrompts.mts"
// const gradioApi = `${process.env.AI_TUBE_MODEL_ANIMATELCM_GRADIO_URL || ""}`
const gradioApi = "https://jbilcke-hf-ai-tube-model-animatelcm.hf.space"
const accessToken = `${process.env.VC_MICROSERVICE_SECRET_TOKEN || ""}`
export const generateVideoWithAnimateLCM = async ({
prompt,
orientation,
projection,
width,
height,
style = "",
seed,
debug,
}: VideoGenerationParams): Promise<string> => {
const actualFunction = async () => {
const negPrompt = ""
prompt = prompt || ""
// seed = seed || generateSeed()
seed = generateSeed()
// label="Sampling steps", value=6, minimum=1, maximum=25, step=1
// we wanna keep this one low (this is LCM after all)
// but values like 10 also give nice results
const nbSteps = 6 // 25
// label="LoRA alpha", value=0.8, minimum=0, maximum=2
const loraAlpha = 0.8 // lora_alpha_slider,
// label="LCM LoRA alpha", value=0.8, minimum=0.0, maximum=1.0
const lcmLoraAlpha = 0.8 // spatial_lora_slider,
// label="Width", value=512, minimum=256, maximum=1024, step=64)
const width = 512
// label="Animation length", value=16, minimum=12, maximum=20, step=1)
const nbFrames = 16
// label="Height", value=512, minimum=256, maximum=1024, step=64)
const height = 256
// label="CFG Scale", value=1.5, minimum=1, maximum=2)
const cfgScale = 1.5
// pimp the prompt
/*
// we put it at the start, to make sure it is always part of the prompt
const positivePrompt = getPositivePrompt([
style,
prompt
].map(x => x.trim()).filter(x => x).join(", "))
const negativePrompt = getNegativePrompt(negPrompt)
*/
const positivePrompt = "Close-up of the dancing duo as they take a bow. The orange tabby cat wears a sequined top hat, and the Siamese cat hugs their shoulders, also wearing a sequined outfit"
const negativePrompt = ""
try {
if (debug) {
console.log(`calling AnimateLCM API with params (some are hidden):`, {
loraAlpha,
lcmLoraAlpha,
positivePrompt,
negativePrompt,
width,
height,
nbSteps,
nbFrames,
cfgScale,
seed,
})
}
const res = await fetch(gradioApi + (gradioApi.endsWith("/") ? "" : "/") + "api/predict", {
method: "POST",
headers: {
"Content-Type": "application/json",
// Authorization: `Bearer ${token}`,
},
body: JSON.stringify({
fn_index: 4, // <- important! it is currently 4, not 1!
data: [
accessToken,
// label="LoRA alpha", value=0.8, minimum=0, maximum=2
loraAlpha, // lora_alpha_slider,
// label="LCM LoRA alpha", value=0.8, minimum=0.0, maximum=1.0
lcmLoraAlpha, // spatial_lora_slider,
//
positivePrompt, // prompt_textbox,
negativePrompt, // negative_prompt_textbox,
// this is the scheduler
// so.. LCM, it is
"LCM", // sampler_dropdown,
// label="Sampling steps", value=6, minimum=1, maximum=25, step=1
// we wanna keep this one low (this is LCM after all)
// but values like 10 also give nice results
nbSteps, // sample_step_slider,
// label="Width", value=512, minimum=256, maximum=1024, step=64)
width, // width_slider,
// label="Animation length", value=16, minimum=12, maximum=20, step=1)
nbFrames, // length_slider,
// label="Height", value=512, minimum=256, maximum=1024, step=64)
height, // height_slider,
// label="CFG Scale", value=1.5, minimum=1, maximum=2)
cfgScale, // cfg_scale_slider,
seed, // seed_textbox,
],
}),
cache: "no-store",
// we can also use this (see https://vercel.com/blog/vercel-cache-api-nextjs-cache)
// next: { revalidate: 1 }
})
// console.log("res:", res)
const { data } = await res.json()
// console.log("data:", data)
// Recommendation: handle errors
if (res.status !== 200 || !Array.isArray(data)) {
// This will activate the closest `error.js` Error Boundary
throw new Error(`Failed to fetch data (status: ${res.status})`)
}
// console.log("data:", data.slice(0, 50))
const base64Content = (data?.[0] || "") as string
if (!base64Content) {
throw new Error(`invalid response (no content)`)
}
return addBase64HeaderToMp4(base64Content)
} catch (err) {
if (debug) {
console.error(`failed to call the AnimateLCM API:`)
console.error(err)
}
throw err
}
}
return tryApiCalls({
func: actualFunction,
debug,
failureMessage: "failed to call the AnimateLCM endpoint"
})
} |