Spaces:
Running
Running
File size: 50,589 Bytes
91fb4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 |
import argparse
import sys
from typing import Any, Dict, List, Optional, Tuple
import torch
from .constants import DEFAULT_IMAGE_RESOLUTION_BUCKETS, DEFAULT_VIDEO_RESOLUTION_BUCKETS
from .models import SUPPORTED_MODEL_CONFIGS
class Args:
r"""
The arguments for the finetrainers training script.
For helpful information about arguments, run `python train.py --help`.
TODO(aryan): add `python train.py --recommend_configs --model_name <model_name>` to recommend
good training configs for a model after extensive testing.
TODO(aryan): add `python train.py --memory_requirements --model_name <model_name>` to show
memory requirements per model, per training type with sensible training settings.
MODEL ARGUMENTS
---------------
model_name (`str`):
Name of model to train. To get a list of models, run `python train.py --list_models`.
pretrained_model_name_or_path (`str`):
Path to pretrained model or model identifier from https://huggingface.co/models. The model should be
loadable based on specified `model_name`.
revision (`str`, defaults to `None`):
If provided, the model will be loaded from a specific branch of the model repository.
variant (`str`, defaults to `None`):
Variant of model weights to use. Some models provide weight variants, such as `fp16`, to reduce disk
storage requirements.
cache_dir (`str`, defaults to `None`):
The directory where the downloaded models and datasets will be stored, or loaded from.
text_encoder_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
Data type for the text encoder when generating text embeddings.
text_encoder_2_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
Data type for the text encoder 2 when generating text embeddings.
text_encoder_3_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
Data type for the text encoder 3 when generating text embeddings.
transformer_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
Data type for the transformer model.
vae_dtype (`torch.dtype`, defaults to `torch.bfloat16`):
Data type for the VAE model.
layerwise_upcasting_modules (`List[str]`, defaults to `[]`):
Modules that should have fp8 storage weights but higher precision computation. Choose between ['transformer'].
layerwise_upcasting_storage_dtype (`torch.dtype`, defaults to `float8_e4m3fn`):
Data type for the layerwise upcasting storage. Choose between ['float8_e4m3fn', 'float8_e5m2'].
layerwise_upcasting_skip_modules_pattern (`List[str]`, defaults to `["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"]`):
Modules to skip for layerwise upcasting. Layers such as normalization and modulation, when casted to fp8 precision
naively (as done in layerwise upcasting), can lead to poorer training and inference quality. We skip these layers
by default, and recommend adding more layers to the default list based on the model architecture.
DATASET ARGUMENTS
-----------------
data_root (`str`):
A folder containing the training data.
dataset_file (`str`, defaults to `None`):
Path to a CSV/JSON/JSONL file containing metadata for training. This should be provided if you're not using
a directory dataset format containing a simple `prompts.txt` and `videos.txt`/`images.txt` for example.
video_column (`str`):
The column of the dataset containing videos. Or, the name of the file in `data_root` folder containing the
line-separated path to video data.
caption_column (`str`):
The column of the dataset containing the instance prompt for each video. Or, the name of the file in
`data_root` folder containing the line-separated instance prompts.
id_token (`str`, defaults to `None`):
Identifier token appended to the start of each prompt if provided. This is useful for LoRA-type training.
image_resolution_buckets (`List[Tuple[int, int]]`, defaults to `None`):
Resolution buckets for images. This should be a list of integer tuples, where each tuple represents the
resolution (height, width) of the image. All images will be resized to the nearest bucket resolution.
video_resolution_buckets (`List[Tuple[int, int, int]]`, defaults to `None`):
Resolution buckets for videos. This should be a list of integer tuples, where each tuple represents the
resolution (num_frames, height, width) of the video. All videos will be resized to the nearest bucket
resolution.
video_reshape_mode (`str`, defaults to `None`):
All input videos are reshaped to this mode. Choose between ['center', 'random', 'none'].
TODO(aryan): We don't support this.
caption_dropout_p (`float`, defaults to `0.00`):
Probability of dropout for the caption tokens. This is useful to improve the unconditional generation
quality of the model.
caption_dropout_technique (`str`, defaults to `empty`):
Technique to use for caption dropout. Choose between ['empty', 'zero']. Some models apply caption dropout
by setting the prompt condition to an empty string, while others zero-out the text embedding tensors.
precompute_conditions (`bool`, defaults to `False`):
Whether or not to precompute the conditionings for the model. This is useful for faster training, and
reduces the memory requirements.
remove_common_llm_caption_prefixes (`bool`, defaults to `False`):
Whether or not to remove common LLM caption prefixes. This is useful for improving the quality of the
generated text.
DATALOADER_ARGUMENTS
--------------------
See https://pytorch.org/docs/stable/data.html for more information.
dataloader_num_workers (`int`, defaults to `0`):
Number of subprocesses to use for data loading. `0` means that the data will be loaded in a blocking manner
on the main process.
pin_memory (`bool`, defaults to `False`):
Whether or not to use the pinned memory setting in PyTorch dataloader. This is useful for faster data loading.
DIFFUSION ARGUMENTS
-------------------
flow_resolution_shifting (`bool`, defaults to `False`):
Resolution-dependent shifting of timestep schedules.
[Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206).
TODO(aryan): We don't support this yet.
flow_base_seq_len (`int`, defaults to `256`):
Base number of tokens for images/video when applying resolution-dependent shifting.
flow_max_seq_len (`int`, defaults to `4096`):
Maximum number of tokens for images/video when applying resolution-dependent shifting.
flow_base_shift (`float`, defaults to `0.5`):
Base shift for timestep schedules when applying resolution-dependent shifting.
flow_max_shift (`float`, defaults to `1.15`):
Maximum shift for timestep schedules when applying resolution-dependent shifting.
flow_shift (`float`, defaults to `1.0`):
Instead of training with uniform/logit-normal sigmas, shift them as (shift * sigma) / (1 + (shift - 1) * sigma).
Setting it higher is helpful when trying to train models for high-resolution generation or to produce better
samples in lower number of inference steps.
flow_weighting_scheme (`str`, defaults to `none`):
We default to the "none" weighting scheme for uniform sampling and uniform loss.
Choose between ['sigma_sqrt', 'logit_normal', 'mode', 'cosmap', 'none'].
flow_logit_mean (`float`, defaults to `0.0`):
Mean to use when using the `'logit_normal'` weighting scheme.
flow_logit_std (`float`, defaults to `1.0`):
Standard deviation to use when using the `'logit_normal'` weighting scheme.
flow_mode_scale (`float`, defaults to `1.29`):
Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.
TRAINING ARGUMENTS
------------------
training_type (`str`, defaults to `None`):
Type of training to perform. Choose between ['lora'].
seed (`int`, defaults to `42`):
A seed for reproducible training.
batch_size (`int`, defaults to `1`):
Per-device batch size.
train_epochs (`int`, defaults to `1`):
Number of training epochs.
train_steps (`int`, defaults to `None`):
Total number of training steps to perform. If provided, overrides `train_epochs`.
rank (`int`, defaults to `128`):
The rank for LoRA matrices.
lora_alpha (`float`, defaults to `64`):
The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices.
target_modules (`List[str]`, defaults to `["to_k", "to_q", "to_v", "to_out.0"]`):
The target modules for LoRA. Make sure to modify this based on the model.
gradient_accumulation_steps (`int`, defaults to `1`):
Number of gradients steps to accumulate before performing an optimizer step.
gradient_checkpointing (`bool`, defaults to `False`):
Whether or not to use gradient/activation checkpointing to save memory at the expense of slower
backward pass.
checkpointing_steps (`int`, defaults to `500`):
Save a checkpoint of the training state every X training steps. These checkpoints can be used both
as final checkpoints in case they are better than the last checkpoint, and are also suitable for
resuming training using `resume_from_checkpoint`.
checkpointing_limit (`int`, defaults to `None`):
Max number of checkpoints to store.
resume_from_checkpoint (`str`, defaults to `None`):
Whether training should be resumed from a previous checkpoint. Use a path saved by `checkpointing_steps`,
or `"latest"` to automatically select the last available checkpoint.
OPTIMIZER ARGUMENTS
-------------------
optimizer (`str`, defaults to `adamw`):
The optimizer type to use. Choose between ['adam', 'adamw'].
use_8bit_bnb (`bool`, defaults to `False`):
Whether to use 8bit variant of the `optimizer` using `bitsandbytes`.
lr (`float`, defaults to `1e-4`):
Initial learning rate (after the potential warmup period) to use.
scale_lr (`bool`, defaults to `False`):
Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.
lr_scheduler (`str`, defaults to `cosine_with_restarts`):
The scheduler type to use. Choose between ['linear', 'cosine', 'cosine_with_restarts', 'polynomial',
'constant', 'constant_with_warmup'].
lr_warmup_steps (`int`, defaults to `500`):
Number of steps for the warmup in the lr scheduler.
lr_num_cycles (`int`, defaults to `1`):
Number of hard resets of the lr in cosine_with_restarts scheduler.
lr_power (`float`, defaults to `1.0`):
Power factor of the polynomial scheduler.
beta1 (`float`, defaults to `0.9`):
beta2 (`float`, defaults to `0.95`):
beta3 (`float`, defaults to `0.999`):
weight_decay (`float`, defaults to `0.0001`):
Penalty for large weights in the model.
epsilon (`float`, defaults to `1e-8`):
Small value to avoid division by zero in the optimizer.
max_grad_norm (`float`, defaults to `1.0`):
Maximum gradient norm to clip the gradients.
VALIDATION ARGUMENTS
--------------------
validation_prompts (`List[str]`, defaults to `None`):
List of prompts to use for validation. If not provided, a random prompt will be selected from the training
dataset.
validation_images (`List[str]`, defaults to `None`):
List of image paths to use for validation.
validation_videos (`List[str]`, defaults to `None`):
List of video paths to use for validation.
validation_heights (`List[int]`, defaults to `None`):
List of heights for the validation videos.
validation_widths (`List[int]`, defaults to `None`):
List of widths for the validation videos.
validation_num_frames (`List[int]`, defaults to `None`):
List of number of frames for the validation videos.
num_validation_videos_per_prompt (`int`, defaults to `1`):
Number of videos to use for validation per prompt.
validation_every_n_epochs (`int`, defaults to `None`):
Perform validation every `n` training epochs.
validation_every_n_steps (`int`, defaults to `None`):
Perform validation every `n` training steps.
enable_model_cpu_offload (`bool`, defaults to `False`):
Whether or not to offload different modeling components to CPU during validation.
validation_frame_rate (`int`, defaults to `25`):
Frame rate to use for the validation videos. This value is defaulted to 25, as used in LTX Video pipeline.
MISCELLANEOUS ARGUMENTS
-----------------------
tracker_name (`str`, defaults to `finetrainers`):
Name of the tracker/project to use for logging training metrics.
push_to_hub (`bool`, defaults to `False`):
Whether or not to push the model to the Hugging Face Hub.
hub_token (`str`, defaults to `None`):
The API token to use for pushing the model to the Hugging Face Hub.
hub_model_id (`str`, defaults to `None`):
The model identifier to use for pushing the model to the Hugging Face Hub.
output_dir (`str`, defaults to `None`):
The directory where the model checkpoints and logs will be stored.
logging_dir (`str`, defaults to `logs`):
The directory where the logs will be stored.
allow_tf32 (`bool`, defaults to `False`):
Whether or not to allow the use of TF32 matmul on compatible hardware.
nccl_timeout (`int`, defaults to `1800`):
Timeout for the NCCL communication.
report_to (`str`, defaults to `wandb`):
The name of the logger to use for logging training metrics. Choose between ['wandb'].
"""
# Model arguments
model_name: str = None
pretrained_model_name_or_path: str = None
revision: Optional[str] = None
variant: Optional[str] = None
cache_dir: Optional[str] = None
text_encoder_dtype: torch.dtype = torch.bfloat16
text_encoder_2_dtype: torch.dtype = torch.bfloat16
text_encoder_3_dtype: torch.dtype = torch.bfloat16
transformer_dtype: torch.dtype = torch.bfloat16
vae_dtype: torch.dtype = torch.bfloat16
layerwise_upcasting_modules: List[str] = []
layerwise_upcasting_storage_dtype: torch.dtype = torch.float8_e4m3fn
layerwise_upcasting_skip_modules_pattern: List[str] = [
"patch_embed",
"pos_embed",
"x_embedder",
"context_embedder",
"time_embed",
"^proj_in$",
"^proj_out$",
"norm",
]
# Dataset arguments
data_root: str = None
dataset_file: Optional[str] = None
video_column: str = None
caption_column: str = None
id_token: Optional[str] = None
image_resolution_buckets: List[Tuple[int, int]] = None
video_resolution_buckets: List[Tuple[int, int, int]] = None
video_reshape_mode: Optional[str] = None
caption_dropout_p: float = 0.00
caption_dropout_technique: str = "empty"
precompute_conditions: bool = False
remove_common_llm_caption_prefixes: bool = False
# Dataloader arguments
dataloader_num_workers: int = 0
pin_memory: bool = False
# Diffusion arguments
flow_resolution_shifting: bool = False
flow_base_seq_len: int = 256
flow_max_seq_len: int = 4096
flow_base_shift: float = 0.5
flow_max_shift: float = 1.15
flow_shift: float = 1.0
flow_weighting_scheme: str = "none"
flow_logit_mean: float = 0.0
flow_logit_std: float = 1.0
flow_mode_scale: float = 1.29
# Training arguments
training_type: str = None
seed: int = 42
batch_size: int = 1
train_epochs: int = 1
train_steps: int = None
rank: int = 128
lora_alpha: float = 64
target_modules: List[str] = ["to_k", "to_q", "to_v", "to_out.0"]
gradient_accumulation_steps: int = 1
gradient_checkpointing: bool = False
checkpointing_steps: int = 500
checkpointing_limit: Optional[int] = None
resume_from_checkpoint: Optional[str] = None
enable_slicing: bool = False
enable_tiling: bool = False
# Optimizer arguments
optimizer: str = "adamw"
use_8bit_bnb: bool = False
lr: float = 1e-4
scale_lr: bool = False
lr_scheduler: str = "cosine_with_restarts"
lr_warmup_steps: int = 0
lr_num_cycles: int = 1
lr_power: float = 1.0
beta1: float = 0.9
beta2: float = 0.95
beta3: float = 0.999
weight_decay: float = 0.0001
epsilon: float = 1e-8
max_grad_norm: float = 1.0
# Validation arguments
validation_prompts: List[str] = None
validation_images: List[str] = None
validation_videos: List[str] = None
validation_heights: List[int] = None
validation_widths: List[int] = None
validation_num_frames: List[int] = None
num_validation_videos_per_prompt: int = 1
validation_every_n_epochs: Optional[int] = None
validation_every_n_steps: Optional[int] = None
enable_model_cpu_offload: bool = False
validation_frame_rate: int = 25
# Miscellaneous arguments
tracker_name: str = "finetrainers"
push_to_hub: bool = False
hub_token: Optional[str] = None
hub_model_id: Optional[str] = None
output_dir: str = None
logging_dir: Optional[str] = "logs"
allow_tf32: bool = False
nccl_timeout: int = 1800 # 30 minutes
report_to: str = "wandb"
def to_dict(self) -> Dict[str, Any]:
return {
"model_arguments": {
"model_name": self.model_name,
"pretrained_model_name_or_path": self.pretrained_model_name_or_path,
"revision": self.revision,
"variant": self.variant,
"cache_dir": self.cache_dir,
"text_encoder_dtype": self.text_encoder_dtype,
"text_encoder_2_dtype": self.text_encoder_2_dtype,
"text_encoder_3_dtype": self.text_encoder_3_dtype,
"transformer_dtype": self.transformer_dtype,
"vae_dtype": self.vae_dtype,
"layerwise_upcasting_modules": self.layerwise_upcasting_modules,
"layerwise_upcasting_storage_dtype": self.layerwise_upcasting_storage_dtype,
"layerwise_upcasting_skip_modules_pattern": self.layerwise_upcasting_skip_modules_pattern,
},
"dataset_arguments": {
"data_root": self.data_root,
"dataset_file": self.dataset_file,
"video_column": self.video_column,
"caption_column": self.caption_column,
"id_token": self.id_token,
"image_resolution_buckets": self.image_resolution_buckets,
"video_resolution_buckets": self.video_resolution_buckets,
"video_reshape_mode": self.video_reshape_mode,
"caption_dropout_p": self.caption_dropout_p,
"caption_dropout_technique": self.caption_dropout_technique,
"precompute_conditions": self.precompute_conditions,
"remove_common_llm_caption_prefixes": self.remove_common_llm_caption_prefixes,
},
"dataloader_arguments": {
"dataloader_num_workers": self.dataloader_num_workers,
"pin_memory": self.pin_memory,
},
"diffusion_arguments": {
"flow_resolution_shifting": self.flow_resolution_shifting,
"flow_base_seq_len": self.flow_base_seq_len,
"flow_max_seq_len": self.flow_max_seq_len,
"flow_base_shift": self.flow_base_shift,
"flow_max_shift": self.flow_max_shift,
"flow_shift": self.flow_shift,
"flow_weighting_scheme": self.flow_weighting_scheme,
"flow_logit_mean": self.flow_logit_mean,
"flow_logit_std": self.flow_logit_std,
"flow_mode_scale": self.flow_mode_scale,
},
"training_arguments": {
"training_type": self.training_type,
"seed": self.seed,
"batch_size": self.batch_size,
"train_epochs": self.train_epochs,
"train_steps": self.train_steps,
"rank": self.rank,
"lora_alpha": self.lora_alpha,
"target_modules": self.target_modules,
"gradient_accumulation_steps": self.gradient_accumulation_steps,
"gradient_checkpointing": self.gradient_checkpointing,
"checkpointing_steps": self.checkpointing_steps,
"checkpointing_limit": self.checkpointing_limit,
"resume_from_checkpoint": self.resume_from_checkpoint,
"enable_slicing": self.enable_slicing,
"enable_tiling": self.enable_tiling,
},
"optimizer_arguments": {
"optimizer": self.optimizer,
"use_8bit_bnb": self.use_8bit_bnb,
"lr": self.lr,
"scale_lr": self.scale_lr,
"lr_scheduler": self.lr_scheduler,
"lr_warmup_steps": self.lr_warmup_steps,
"lr_num_cycles": self.lr_num_cycles,
"lr_power": self.lr_power,
"beta1": self.beta1,
"beta2": self.beta2,
"beta3": self.beta3,
"weight_decay": self.weight_decay,
"epsilon": self.epsilon,
"max_grad_norm": self.max_grad_norm,
},
"validation_arguments": {
"validation_prompts": self.validation_prompts,
"validation_images": self.validation_images,
"validation_videos": self.validation_videos,
"num_validation_videos_per_prompt": self.num_validation_videos_per_prompt,
"validation_every_n_epochs": self.validation_every_n_epochs,
"validation_every_n_steps": self.validation_every_n_steps,
"enable_model_cpu_offload": self.enable_model_cpu_offload,
"validation_frame_rate": self.validation_frame_rate,
},
"miscellaneous_arguments": {
"tracker_name": self.tracker_name,
"push_to_hub": self.push_to_hub,
"hub_token": self.hub_token,
"hub_model_id": self.hub_model_id,
"output_dir": self.output_dir,
"logging_dir": self.logging_dir,
"allow_tf32": self.allow_tf32,
"nccl_timeout": self.nccl_timeout,
"report_to": self.report_to,
},
}
# TODO(aryan): handle more informative messages
_IS_ARGUMENTS_REQUIRED = "--list_models" not in sys.argv
def parse_arguments() -> Args:
parser = argparse.ArgumentParser()
if _IS_ARGUMENTS_REQUIRED:
_add_model_arguments(parser)
_add_dataset_arguments(parser)
_add_dataloader_arguments(parser)
_add_diffusion_arguments(parser)
_add_training_arguments(parser)
_add_optimizer_arguments(parser)
_add_validation_arguments(parser)
_add_miscellaneous_arguments(parser)
args = parser.parse_args()
return _map_to_args_type(args)
else:
_add_helper_arguments(parser)
args = parser.parse_args()
_display_helper_messages(args)
sys.exit(0)
def validate_args(args: Args):
_validated_model_args(args)
_validate_training_args(args)
_validate_validation_args(args)
def _add_model_arguments(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--model_name",
type=str,
required=True,
choices=list(SUPPORTED_MODEL_CONFIGS.keys()),
help="Name of model to train.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--text_encoder_dtype", type=str, default="bf16", help="Data type for the text encoder.")
parser.add_argument("--text_encoder_2_dtype", type=str, default="bf16", help="Data type for the text encoder 2.")
parser.add_argument("--text_encoder_3_dtype", type=str, default="bf16", help="Data type for the text encoder 3.")
parser.add_argument("--transformer_dtype", type=str, default="bf16", help="Data type for the transformer model.")
parser.add_argument("--vae_dtype", type=str, default="bf16", help="Data type for the VAE model.")
parser.add_argument(
"--layerwise_upcasting_modules",
type=str,
default=[],
nargs="+",
choices=["transformer"],
help="Modules that should have fp8 storage weights but higher precision computation.",
)
parser.add_argument(
"--layerwise_upcasting_storage_dtype",
type=str,
default="float8_e4m3fn",
choices=["float8_e4m3fn", "float8_e5m2"],
help="Data type for the layerwise upcasting storage.",
)
parser.add_argument(
"--layerwise_upcasting_skip_modules_pattern",
type=str,
default=["patch_embed", "pos_embed", "x_embedder", "context_embedder", "^proj_in$", "^proj_out$", "norm"],
nargs="+",
help="Modules to skip for layerwise upcasting.",
)
def _add_dataset_arguments(parser: argparse.ArgumentParser) -> None:
def parse_resolution_bucket(resolution_bucket: str) -> Tuple[int, ...]:
return tuple(map(int, resolution_bucket.split("x")))
def parse_image_resolution_bucket(resolution_bucket: str) -> Tuple[int, int]:
resolution_bucket = parse_resolution_bucket(resolution_bucket)
assert (
len(resolution_bucket) == 2
), f"Expected 2D resolution bucket, got {len(resolution_bucket)}D resolution bucket"
return resolution_bucket
def parse_video_resolution_bucket(resolution_bucket: str) -> Tuple[int, int, int]:
resolution_bucket = parse_resolution_bucket(resolution_bucket)
assert (
len(resolution_bucket) == 3
), f"Expected 3D resolution bucket, got {len(resolution_bucket)}D resolution bucket"
return resolution_bucket
parser.add_argument(
"--data_root",
type=str,
required=True,
help=("A folder containing the training data."),
)
parser.add_argument(
"--dataset_file",
type=str,
default=None,
help=("Path to a CSV file if loading prompts/video paths using this format."),
)
parser.add_argument(
"--video_column",
type=str,
default="video",
help="The column of the dataset containing videos. Or, the name of the file in `--data_root` folder containing the line-separated path to video data.",
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--data_root` folder containing the line-separated instance prompts.",
)
parser.add_argument(
"--id_token",
type=str,
default=None,
help="Identifier token appended to the start of each prompt if provided.",
)
parser.add_argument(
"--image_resolution_buckets",
type=parse_image_resolution_bucket,
default=None,
nargs="+",
help="Resolution buckets for images.",
)
parser.add_argument(
"--video_resolution_buckets",
type=parse_video_resolution_bucket,
default=None,
nargs="+",
help="Resolution buckets for videos.",
)
parser.add_argument(
"--video_reshape_mode",
type=str,
default=None,
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
)
parser.add_argument(
"--caption_dropout_p",
type=float,
default=0.00,
help="Probability of dropout for the caption tokens.",
)
parser.add_argument(
"--caption_dropout_technique",
type=str,
default="empty",
choices=["empty", "zero"],
help="Technique to use for caption dropout.",
)
parser.add_argument(
"--precompute_conditions",
action="store_true",
help="Whether or not to precompute the conditionings for the model.",
)
parser.add_argument(
"--remove_common_llm_caption_prefixes",
action="store_true",
help="Whether or not to remove common LLM caption prefixes.",
)
def _add_dataloader_arguments(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Whether or not to use the pinned memory setting in pytorch dataloader.",
)
def _add_diffusion_arguments(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--flow_resolution_shifting",
action="store_true",
help="Resolution-dependent shifting of timestep schedules.",
)
parser.add_argument(
"--flow_base_seq_len",
type=int,
default=256,
help="Base image/video sequence length for the diffusion model.",
)
parser.add_argument(
"--flow_max_seq_len",
type=int,
default=4096,
help="Maximum image/video sequence length for the diffusion model.",
)
parser.add_argument(
"--flow_base_shift",
type=float,
default=0.5,
help="Base shift as described in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206)",
)
parser.add_argument(
"--flow_max_shift",
type=float,
default=1.15,
help="Maximum shift as described in [Scaling Rectified Flow Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2403.03206)",
)
parser.add_argument(
"--flow_shift",
type=float,
default=1.0,
help="Shift value to use for the flow matching timestep schedule.",
)
parser.add_argument(
"--flow_weighting_scheme",
type=str,
default="none",
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
help='We default to the "none" weighting scheme for uniform sampling and uniform loss',
)
parser.add_argument(
"--flow_logit_mean",
type=float,
default=0.0,
help="Mean to use when using the `'logit_normal'` weighting scheme.",
)
parser.add_argument(
"--flow_logit_std",
type=float,
default=1.0,
help="Standard deviation to use when using the `'logit_normal'` weighting scheme.",
)
parser.add_argument(
"--flow_mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
)
def _add_training_arguments(parser: argparse.ArgumentParser) -> None:
# TODO: support full finetuning and other kinds
parser.add_argument(
"--training_type",
type=str,
choices=["lora", "full-finetune"],
required=True,
help="Type of training to perform. Choose between ['lora', 'full-finetune']",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument("--train_epochs", type=int, default=1, help="Number of training epochs.")
parser.add_argument(
"--train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.",
)
parser.add_argument("--rank", type=int, default=64, help="The rank for LoRA matrices.")
parser.add_argument(
"--lora_alpha",
type=int,
default=64,
help="The lora_alpha to compute scaling factor (lora_alpha / rank) for LoRA matrices.",
)
parser.add_argument(
"--target_modules",
type=str,
default=["to_k", "to_q", "to_v", "to_out.0"],
nargs="+",
help="The target modules for LoRA.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpointing_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--enable_slicing",
action="store_true",
help="Whether or not to use VAE slicing for saving memory.",
)
parser.add_argument(
"--enable_tiling",
action="store_true",
help="Whether or not to use VAE tiling for saving memory.",
)
def _add_optimizer_arguments(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--lr",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument(
"--lr_power",
type=float,
default=1.0,
help="Power factor of the polynomial scheduler.",
)
parser.add_argument(
"--optimizer",
type=lambda s: s.lower(),
default="adam",
choices=["adam", "adamw"],
help=("The optimizer type to use."),
)
parser.add_argument(
"--use_8bit_bnb",
action="store_true",
help=("Whether to use 8bit variant of the `--optimizer` using `bitsandbytes`."),
)
parser.add_argument(
"--beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--beta2",
type=float,
default=0.95,
help="The beta2 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--beta3",
type=float,
default=None,
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=1e-04,
help="Weight decay to use for optimizer.",
)
parser.add_argument(
"--epsilon",
type=float,
default=1e-8,
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
def _add_validation_arguments(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--validation_prompts",
type=str,
default=None,
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
)
parser.add_argument(
"--validation_images",
type=str,
default=None,
help="One or more image path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
)
parser.add_argument(
"--validation_videos",
type=str,
default=None,
help="One or more video path(s)/URLs that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
)
parser.add_argument(
"--validation_separator",
type=str,
default=":::",
help="String that separates multiple validation prompts",
)
parser.add_argument(
"--num_validation_videos",
type=int,
default=1,
help="Number of videos that should be generated during validation per `validation_prompt`.",
)
parser.add_argument(
"--validation_epochs",
type=int,
default=None,
help="Run validation every X training epochs. Validation consists of running the validation prompt `args.num_validation_videos` times.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=None,
help="Run validation every X training steps. Validation consists of running the validation prompt `args.num_validation_videos` times.",
)
parser.add_argument(
"--validation_frame_rate",
type=int,
default=25,
help="Frame rate to use for the validation videos.",
)
parser.add_argument(
"--enable_model_cpu_offload",
action="store_true",
help="Whether or not to enable model-wise CPU offloading when performing validation/testing to save memory.",
)
def _add_miscellaneous_arguments(parser: argparse.ArgumentParser) -> None:
parser.add_argument("--tracker_name", type=str, default="finetrainers", help="Project tracker name")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
parser.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub.",
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--output_dir",
type=str,
default="finetrainers-training",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help="Directory where logs are stored.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--nccl_timeout",
type=int,
default=600,
help="Maximum timeout duration before which allgather, or related, operations fail in multi-GPU/multi-node training settings.",
)
parser.add_argument(
"--report_to",
type=str,
default="none",
choices=["none", "wandb"],
help="The integration to report the results and logs to.",
)
def _add_helper_arguments(parser: argparse.ArgumentParser) -> None:
parser.add_argument(
"--list_models",
action="store_true",
help="List all the supported models.",
)
_DTYPE_MAP = {
"bf16": torch.bfloat16,
"fp16": torch.float16,
"fp32": torch.float32,
"float8_e4m3fn": torch.float8_e4m3fn,
"float8_e5m2": torch.float8_e5m2,
}
def _map_to_args_type(args: Dict[str, Any]) -> Args:
result_args = Args()
# Model arguments
result_args.model_name = args.model_name
result_args.pretrained_model_name_or_path = args.pretrained_model_name_or_path
result_args.revision = args.revision
result_args.variant = args.variant
result_args.cache_dir = args.cache_dir
result_args.text_encoder_dtype = _DTYPE_MAP[args.text_encoder_dtype]
result_args.text_encoder_2_dtype = _DTYPE_MAP[args.text_encoder_2_dtype]
result_args.text_encoder_3_dtype = _DTYPE_MAP[args.text_encoder_3_dtype]
result_args.transformer_dtype = _DTYPE_MAP[args.transformer_dtype]
result_args.vae_dtype = _DTYPE_MAP[args.vae_dtype]
result_args.layerwise_upcasting_modules = args.layerwise_upcasting_modules
result_args.layerwise_upcasting_storage_dtype = _DTYPE_MAP[args.layerwise_upcasting_storage_dtype]
result_args.layerwise_upcasting_skip_modules_pattern = args.layerwise_upcasting_skip_modules_pattern
# Dataset arguments
if args.data_root is None and args.dataset_file is None:
raise ValueError("At least one of `data_root` or `dataset_file` should be provided.")
result_args.data_root = args.data_root
result_args.dataset_file = args.dataset_file
result_args.video_column = args.video_column
result_args.caption_column = args.caption_column
result_args.id_token = args.id_token
result_args.image_resolution_buckets = args.image_resolution_buckets or DEFAULT_IMAGE_RESOLUTION_BUCKETS
result_args.video_resolution_buckets = args.video_resolution_buckets or DEFAULT_VIDEO_RESOLUTION_BUCKETS
result_args.video_reshape_mode = args.video_reshape_mode
result_args.caption_dropout_p = args.caption_dropout_p
result_args.caption_dropout_technique = args.caption_dropout_technique
result_args.precompute_conditions = args.precompute_conditions
result_args.remove_common_llm_caption_prefixes = args.remove_common_llm_caption_prefixes
# Dataloader arguments
result_args.dataloader_num_workers = args.dataloader_num_workers
result_args.pin_memory = args.pin_memory
# Diffusion arguments
result_args.flow_resolution_shifting = args.flow_resolution_shifting
result_args.flow_base_seq_len = args.flow_base_seq_len
result_args.flow_max_seq_len = args.flow_max_seq_len
result_args.flow_base_shift = args.flow_base_shift
result_args.flow_max_shift = args.flow_max_shift
result_args.flow_shift = args.flow_shift
result_args.flow_weighting_scheme = args.flow_weighting_scheme
result_args.flow_logit_mean = args.flow_logit_mean
result_args.flow_logit_std = args.flow_logit_std
result_args.flow_mode_scale = args.flow_mode_scale
# Training arguments
result_args.training_type = args.training_type
result_args.seed = args.seed
result_args.batch_size = args.batch_size
result_args.train_epochs = args.train_epochs
result_args.train_steps = args.train_steps
result_args.rank = args.rank
result_args.lora_alpha = args.lora_alpha
result_args.target_modules = args.target_modules
result_args.gradient_accumulation_steps = args.gradient_accumulation_steps
result_args.gradient_checkpointing = args.gradient_checkpointing
result_args.checkpointing_steps = args.checkpointing_steps
result_args.checkpointing_limit = args.checkpointing_limit
result_args.resume_from_checkpoint = args.resume_from_checkpoint
result_args.enable_slicing = args.enable_slicing
result_args.enable_tiling = args.enable_tiling
# Optimizer arguments
result_args.optimizer = args.optimizer or "adamw"
result_args.use_8bit_bnb = args.use_8bit_bnb
result_args.lr = args.lr or 1e-4
result_args.scale_lr = args.scale_lr
result_args.lr_scheduler = args.lr_scheduler
result_args.lr_warmup_steps = args.lr_warmup_steps
result_args.lr_num_cycles = args.lr_num_cycles
result_args.lr_power = args.lr_power
result_args.beta1 = args.beta1
result_args.beta2 = args.beta2
result_args.beta3 = args.beta3
result_args.weight_decay = args.weight_decay
result_args.epsilon = args.epsilon
result_args.max_grad_norm = args.max_grad_norm
# Validation arguments
validation_prompts = args.validation_prompts.split(args.validation_separator) if args.validation_prompts else []
validation_images = args.validation_images.split(args.validation_separator) if args.validation_images else None
validation_videos = args.validation_videos.split(args.validation_separator) if args.validation_videos else None
stripped_validation_prompts = []
validation_heights = []
validation_widths = []
validation_num_frames = []
for prompt in validation_prompts:
prompt: str
prompt = prompt.strip()
actual_prompt, separator, resolution = prompt.rpartition("@@@")
stripped_validation_prompts.append(actual_prompt)
num_frames, height, width = None, None, None
if len(resolution) > 0:
num_frames, height, width = map(int, resolution.split("x"))
validation_num_frames.append(num_frames)
validation_heights.append(height)
validation_widths.append(width)
if validation_images is None:
validation_images = [None] * len(validation_prompts)
if validation_videos is None:
validation_videos = [None] * len(validation_prompts)
result_args.validation_prompts = stripped_validation_prompts
result_args.validation_heights = validation_heights
result_args.validation_widths = validation_widths
result_args.validation_num_frames = validation_num_frames
result_args.validation_images = validation_images
result_args.validation_videos = validation_videos
result_args.num_validation_videos_per_prompt = args.num_validation_videos
result_args.validation_every_n_epochs = args.validation_epochs
result_args.validation_every_n_steps = args.validation_steps
result_args.enable_model_cpu_offload = args.enable_model_cpu_offload
result_args.validation_frame_rate = args.validation_frame_rate
# Miscellaneous arguments
result_args.tracker_name = args.tracker_name
result_args.push_to_hub = args.push_to_hub
result_args.hub_token = args.hub_token
result_args.hub_model_id = args.hub_model_id
result_args.output_dir = args.output_dir
result_args.logging_dir = args.logging_dir
result_args.allow_tf32 = args.allow_tf32
result_args.nccl_timeout = args.nccl_timeout
result_args.report_to = args.report_to
return result_args
def _validated_model_args(args: Args):
if args.training_type == "full-finetune":
assert (
"transformer" not in args.layerwise_upcasting_modules
), "Layerwise upcasting is not supported for full-finetune training"
def _validate_training_args(args: Args):
if args.training_type == "lora":
assert args.rank is not None, "Rank is required for LoRA training"
assert args.lora_alpha is not None, "LoRA alpha is required for LoRA training"
assert (
args.target_modules is not None and len(args.target_modules) > 0
), "Target modules are required for LoRA training"
def _validate_validation_args(args: Args):
assert args.validation_prompts is not None, "Validation prompts are required for validation"
if args.validation_images is not None:
assert len(args.validation_images) == len(
args.validation_prompts
), "Validation images and prompts should be of same length"
if args.validation_videos is not None:
assert len(args.validation_videos) == len(
args.validation_prompts
), "Validation videos and prompts should be of same length"
assert len(args.validation_prompts) == len(
args.validation_heights
), "Validation prompts and heights should be of same length"
assert len(args.validation_prompts) == len(
args.validation_widths
), "Validation prompts and widths should be of same length"
def _display_helper_messages(args: argparse.Namespace):
if args.list_models:
print("Supported models:")
for index, model_name in enumerate(SUPPORTED_MODEL_CONFIGS.keys()):
print(f" {index + 1}. {model_name}")
|