Spaces:
Running
Running
File size: 13,710 Bytes
91fb4ef 38cfbff 91fb4ef 38cfbff 91fb4ef 54a2a4e 91fb4ef 38cfbff 91fb4ef 38cfbff 91fb4ef 38cfbff 91fb4ef 38cfbff 91fb4ef 38cfbff 91fb4ef 32b4f0f 947f205 32b4f0f 54a2a4e 91fb4ef 54a2a4e 91fb4ef 54a2a4e 91fb4ef 38cfbff 54a2a4e 38cfbff 91fb4ef 38cfbff 54a2a4e 38cfbff 91fb4ef 38cfbff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import re
import logging
from dataclasses import dataclass
from typing import Optional, Dict, Any, List
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
@dataclass
class TrainingState:
"""Represents the current state of training"""
status: str = "idle" # idle, initializing, training, completed, error, stopped
current_step: int = 0
total_steps: int = 0
current_epoch: int = 0
total_epochs: int = 0
step_loss: float = 0.0
learning_rate: float = 0.0
grad_norm: float = 0.0
memory_allocated: float = 0.0
memory_reserved: float = 0.0
start_time: Optional[datetime] = None
last_step_time: Optional[datetime] = None
estimated_remaining: Optional[timedelta] = None
error_message: Optional[str] = None
initialization_stage: str = ""
download_progress: float = 0.0
# New fields for current task tracking
current_task: str = ""
current_task_progress: str = ""
task_progress_percentage: float = 0.0
task_items_processed: int = 0
task_total_items: int = 0
task_time_remaining: str = ""
task_speed: str = ""
# Store recent progress lines for task display
recent_progress_lines: List[str] = None
def __post_init__(self):
if self.recent_progress_lines is None:
self.recent_progress_lines = []
def calculate_progress(self) -> float:
"""Calculate overall progress as percentage"""
if self.total_steps == 0:
return 0.0
return (self.current_step / self.total_steps) * 100
def to_dict(self) -> Dict[str, Any]:
"""Convert state to dictionary for UI updates"""
# Calculate elapsed time only if training is active and we have a start time
if self.start_time and self.status in ["training", "initializing"]:
elapsed = str(datetime.now() - self.start_time)
else:
# Use the last known elapsed time or show 0
elapsed = "0:00:00" if not self.last_step_time else str(self.last_step_time - self.start_time if self.start_time else "0:00:00")
# Use precomputed remaining time from logs if available
remaining = str(self.estimated_remaining) if self.estimated_remaining else "calculating..."
result = {
"status": self.status,
"progress": f"{self.calculate_progress():.1f}%",
"current_step": self.current_step,
"total_steps": self.total_steps,
"current_epoch": self.current_epoch,
"total_epochs": self.total_epochs,
"step_loss": f"{self.step_loss:.4f}",
"learning_rate": f"{self.learning_rate:.2e}",
"grad_norm": f"{self.grad_norm:.4f}",
"memory": f"{self.memory_allocated:.1f}GB allocated, {self.memory_reserved:.1f}GB reserved",
"elapsed": elapsed,
"remaining": remaining,
"initialization_stage": self.initialization_stage,
"error_message": self.error_message,
"download_progress": self.download_progress
}
# Add current task information
result["current_task"] = self.get_task_display()
return result
def get_task_display(self) -> str:
"""Generate a formatted display of the current task"""
if not self.recent_progress_lines:
if self.status == "training":
return "Training in progress..."
return ""
# Get the most recent progress line
latest_line = self.recent_progress_lines[-1]
# For downloading shards or loading checkpoint shards
if "Downloading shards" in latest_line or "Loading checkpoint shards" in latest_line:
# Extract just the progress bar part
match = re.search(r'(\d+%\|[ββββββββ\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract the remaining information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
task_type = "Downloading shards" if "Downloading shards" in latest_line else "Loading checkpoint shards"
return f"{task_type}:\n{progress_bar}\n{time_info}"
# For "Rank 0" progress (typically training steps)
elif "Rank 0:" in latest_line:
match = re.search(r'Rank 0:\s+(\d+%\|[ββββββββ\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
return f"Training iteration:\n{progress_bar} {step_info}\n{time_info}"
# For Filling buffer progress
elif "Filling buffer" in latest_line:
match = re.search(r'(\d+%\|[ββββββββ\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
return f"Filling buffer from data iterator:\n{progress_bar} {step_info}\n{time_info}"
# For other progress lines
elif "%" in latest_line and "|" in latest_line:
# Generic progress bar pattern
match = re.search(r'(\d+%\|[ββββββββ\s]+\|)', latest_line)
if match:
progress_bar = match.group(1)
# Try to extract step information
step_match = re.search(r'\|\s+(\d+/\d+)', latest_line)
step_info = step_match.group(1) if step_match else ""
# Try to extract time information
time_match = re.search(r'\[(\d+:\d+<\d+:\d+,\s+[\d.]+s/it)', latest_line)
time_info = time_match.group(1) if time_match else ""
task_prefix = "Processing:"
# Try to determine task type
if "Training" in latest_line:
task_prefix = "Training:"
elif "Precomputing" in latest_line:
task_prefix = "Precomputing:"
return f"{task_prefix}\n{progress_bar} {step_info}\n{time_info}"
# If we couldn't parse it properly, just return the line
return latest_line.strip()
class TrainingLogParser:
"""Parser for training logs with state management"""
def __init__(self):
self.state = TrainingState()
self._last_update_time = None
# Maximum number of recent progress lines to store
self.max_recent_lines = 5
def reset(self):
"""Reset parser state"""
self.state = TrainingState()
self._last_update_time = None
def get_current_task_display(self) -> str:
"""Get the formatted current task display"""
return self.state.get_task_display()
def parse_line(self, line: str) -> Optional[Dict[str, Any]]:
"""Parse a single log line and update state"""
try:
# Check if this is a progress line
if any(pattern in line for pattern in ["Downloading shards:", "Loading checkpoint shards:", "Rank 0:", "Filling buffer", "|"]) and "%" in line:
# Add to recent progress lines, maintaining order and max length
self.state.recent_progress_lines.append(line)
if len(self.state.recent_progress_lines) > self.max_recent_lines:
self.state.recent_progress_lines.pop(0)
# Return updated state
return self.state.to_dict()
# Training step progress line example:
# Training steps: 1%|β | 1/70 [00:14<16:11, 14.08s/it, grad_norm=0.00789, step_loss=0.555, lr=3e-7]
if ("Started training" in line) or ("Starting training" in line):
self.state.status = "training"
# Check for "Training steps:" which contains the progress information
if "Training steps:" in line:
# Set status to training if we see this
self.state.status = "training"
if not self.state.start_time:
self.state.start_time = datetime.now()
# Extract step numbers
steps_match = re.search(r"(\d+)/(\d+)", line)
if steps_match:
self.state.current_step = int(steps_match.group(1))
self.state.total_steps = int(steps_match.group(2))
# Extract metrics
for pattern, attr in [
(r"step_loss=([0-9.e-]+)", "step_loss"),
(r"lr=([0-9.e-]+)", "learning_rate"),
(r"grad_norm=([0-9.e-]+)", "grad_norm")
]:
match = re.search(pattern, line)
if match:
setattr(self.state, attr, float(match.group(1)))
# Extract time remaining directly from the log
# Format: [MM:SS<M:SS:SS, SS.SSs/it]
time_remaining_match = re.search(r"<(\d+:\d+:\d+)", line)
if time_remaining_match:
remaining_str = time_remaining_match.group(1)
# Store the string directly - no need to parse it
self.state.estimated_remaining = remaining_str
# If no direct time estimate, look for hour:min format
if not time_remaining_match:
hour_min_match = re.search(r"<(\d+h\s*\d+m)", line)
if hour_min_match:
self.state.estimated_remaining = hour_min_match.group(1)
# Update last processing time
self.state.last_step_time = datetime.now()
logger.info(f"Updated training state: step={self.state.current_step}/{self.state.total_steps}, loss={self.state.step_loss}")
return self.state.to_dict()
# Epoch information
# there is an issue with how epoch is reported because we display:
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
# we should probably just show the steps
epoch_match = re.search(r"Starting epoch \((\d+)/(\d+)\)", line)
if epoch_match:
self.state.current_epoch = int(epoch_match.group(1))
self.state.total_epochs = int(epoch_match.group(2))
logger.info(f"Updated epoch: {self.state.current_epoch}/{self.state.total_epochs}")
return self.state.to_dict()
# Initialization stages
if "Initializing" in line:
self.state.status = "initializing"
self.state.initialization_stage = line.split("Initializing")[1].strip()
logger.info(f"Initialization stage: {self.state.initialization_stage}")
return self.state.to_dict()
# Memory usage
if "memory_allocated" in line:
mem_match = re.search(r'"memory_allocated":\s*([0-9.]+)', line)
if mem_match:
self.state.memory_allocated = float(mem_match.group(1))
reserved_match = re.search(r'"memory_reserved":\s*([0-9.]+)', line)
if reserved_match:
self.state.memory_reserved = float(reserved_match.group(1))
logger.info(f"Updated memory: allocated={self.state.memory_allocated}GB, reserved={self.state.memory_reserved}GB")
return self.state.to_dict()
# Completion states
if "Training completed successfully" in line:
self.state.status = "completed"
# Store final elapsed time
self.state.last_step_time = datetime.now()
logger.info("Training completed")
return self.state.to_dict()
if any(x in line for x in ["Training process stopped", "Training stopped"]):
self.state.status = "stopped"
# Store final elapsed time
self.state.last_step_time = datetime.now()
logger.info("Training stopped")
return self.state.to_dict()
if "Error during training:" in line:
self.state.status = "error"
self.state.error_message = line.split("Error during training:")[1].strip()
logger.info(f"Training error: {self.state.error_message}")
return self.state.to_dict()
except Exception as e:
logger.error(f"Error parsing line: {str(e)}")
return None |