File size: 5,772 Bytes
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import inspect

import torch
from accelerate.logging import get_logger


logger = get_logger("finetrainers")


def get_optimizer(
    params_to_optimize,
    optimizer_name: str = "adam",
    learning_rate: float = 1e-3,
    beta1: float = 0.9,
    beta2: float = 0.95,
    beta3: float = 0.98,
    epsilon: float = 1e-8,
    weight_decay: float = 1e-4,
    prodigy_decouple: bool = False,
    prodigy_use_bias_correction: bool = False,
    prodigy_safeguard_warmup: bool = False,
    use_8bit: bool = False,
    use_4bit: bool = False,
    use_torchao: bool = False,
    use_deepspeed: bool = False,
    use_cpu_offload_optimizer: bool = False,
    offload_gradients: bool = False,
) -> torch.optim.Optimizer:
    optimizer_name = optimizer_name.lower()

    # Use DeepSpeed optimzer
    if use_deepspeed:
        from accelerate.utils import DummyOptim

        return DummyOptim(
            params_to_optimize,
            lr=learning_rate,
            betas=(beta1, beta2),
            eps=epsilon,
            weight_decay=weight_decay,
        )

    # TODO: consider moving the validation logic to `args.py` when we have torchao.
    if use_8bit and use_4bit:
        raise ValueError("Cannot set both `use_8bit` and `use_4bit` to True.")

    if (use_torchao and (use_8bit or use_4bit)) or use_cpu_offload_optimizer:
        try:
            import torchao  # noqa

        except ImportError:
            raise ImportError(
                "To use optimizers from torchao, please install the torchao library: `USE_CPP=0 pip install torchao`."
            )

    if not use_torchao and use_4bit:
        raise ValueError("4-bit Optimizers are only supported with torchao.")

    # Optimizer creation
    supported_optimizers = ["adam", "adamw", "prodigy", "came"]
    if optimizer_name not in supported_optimizers:
        logger.warning(
            f"Unsupported choice of optimizer: {optimizer_name}. Supported optimizers include {supported_optimizers}. Defaulting to `AdamW`."
        )
        optimizer_name = "adamw"

    if (use_8bit or use_4bit) and optimizer_name not in ["adam", "adamw"]:
        raise ValueError("`use_8bit` and `use_4bit` can only be used with the Adam and AdamW optimizers.")

    if use_8bit:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

    if optimizer_name == "adamw":
        if use_torchao:
            from torchao.prototype.low_bit_optim import AdamW4bit, AdamW8bit

            optimizer_class = AdamW8bit if use_8bit else AdamW4bit if use_4bit else torch.optim.AdamW
        else:
            optimizer_class = bnb.optim.AdamW8bit if use_8bit else torch.optim.AdamW

        init_kwargs = {
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
        }

    elif optimizer_name == "adam":
        if use_torchao:
            from torchao.prototype.low_bit_optim import Adam4bit, Adam8bit

            optimizer_class = Adam8bit if use_8bit else Adam4bit if use_4bit else torch.optim.Adam
        else:
            optimizer_class = bnb.optim.Adam8bit if use_8bit else torch.optim.Adam

        init_kwargs = {
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
        }

    elif optimizer_name == "prodigy":
        try:
            import prodigyopt
        except ImportError:
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")

        optimizer_class = prodigyopt.Prodigy

        if learning_rate <= 0.1:
            logger.warning(
                "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
            )

        init_kwargs = {
            "lr": learning_rate,
            "betas": (beta1, beta2),
            "beta3": beta3,
            "eps": epsilon,
            "weight_decay": weight_decay,
            "decouple": prodigy_decouple,
            "use_bias_correction": prodigy_use_bias_correction,
            "safeguard_warmup": prodigy_safeguard_warmup,
        }

    elif optimizer_name == "came":
        try:
            import came_pytorch
        except ImportError:
            raise ImportError("To use CAME, please install the came-pytorch library: `pip install came-pytorch`")

        optimizer_class = came_pytorch.CAME

        init_kwargs = {
            "lr": learning_rate,
            "eps": (1e-30, 1e-16),
            "betas": (beta1, beta2, beta3),
            "weight_decay": weight_decay,
        }

    if use_cpu_offload_optimizer:
        from torchao.prototype.low_bit_optim import CPUOffloadOptimizer

        if "fused" in inspect.signature(optimizer_class.__init__).parameters:
            init_kwargs.update({"fused": True})

        optimizer = CPUOffloadOptimizer(
            params_to_optimize, optimizer_class=optimizer_class, offload_gradients=offload_gradients, **init_kwargs
        )
    else:
        optimizer = optimizer_class(params_to_optimize, **init_kwargs)

    return optimizer


def gradient_norm(parameters):
    norm = 0
    for param in parameters:
        if param.grad is None:
            continue
        local_norm = param.grad.detach().data.norm(2)
        norm += local_norm.item() ** 2
    norm = norm**0.5
    return norm


def max_gradient(parameters):
    max_grad_value = float("-inf")
    for param in parameters:
        if param.grad is None:
            continue
        local_max_grad = param.grad.detach().data.abs().max()
        max_grad_value = max(max_grad_value, local_max_grad.item())
    return max_grad_value