File size: 35,326 Bytes
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e386f72
 
dd52c86
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
947f205
 
 
 
91fb4ef
54a2a4e
947f205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a2a4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
54a2a4e
 
 
91fb4ef
 
 
54a2a4e
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
4905a7d
91fb4ef
 
 
446e79f
91fb4ef
 
 
446e79f
91fb4ef
 
 
 
 
 
947f205
446e79f
 
 
 
4905a7d
91fb4ef
446e79f
 
 
91fb4ef
4905a7d
91fb4ef
 
446e79f
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82a6631
f407698
 
 
 
 
 
 
 
 
 
 
54a2a4e
f407698
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a2a7a2
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90af3c
 
 
 
 
 
91fb4ef
 
 
c90af3c
 
91fb4ef
 
 
 
c90af3c
 
91fb4ef
c90af3c
91fb4ef
 
 
 
 
 
 
 
54a2a4e
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947f205
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
947f205
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a2a4e
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
54a2a4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4905a7d
91fb4ef
 
 
1b19314
947f205
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26cd6a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
import os
import sys
import json
import time
import shutil
import gradio as gr
from pathlib import Path
from datetime import datetime
import subprocess
import signal
import psutil
import tempfile
import zipfile
import logging
import traceback
import threading
import select

from typing import Any, Optional, Dict, List, Union, Tuple

from huggingface_hub import upload_folder, create_repo

from .config import TrainingConfig, TRAINING_PRESETS,  LOG_FILE_PATH, TRAINING_VIDEOS_PATH, STORAGE_PATH, TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, HF_API_TOKEN, MODEL_TYPES
from .utils import make_archive, parse_training_log, is_image_file, is_video_file
from .finetrainers_utils import prepare_finetrainers_dataset, copy_files_to_training_dir

logger = logging.getLogger(__name__)

class TrainingService:
    def __init__(self):
        # State and log files
        self.session_file = OUTPUT_PATH / "session.json"
        self.status_file = OUTPUT_PATH / "status.json"
        self.pid_file = OUTPUT_PATH / "training.pid"
        self.log_file = OUTPUT_PATH / "training.log"

        self.file_handler = None
        self.setup_logging()

        logger.info("Training service initialized")

    def setup_logging(self):
        """Set up logging with proper handler management"""
        global logger
        logger = logging.getLogger(__name__)
        logger.setLevel(logging.INFO)
        
        # Remove any existing handlers to avoid duplicates
        logger.handlers.clear()
        
        # Add stdout handler
        stdout_handler = logging.StreamHandler(sys.stdout)
        stdout_handler.setFormatter(logging.Formatter(
            '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        ))
        logger.addHandler(stdout_handler)
        
        # Add file handler if log file is accessible
        try:
            # Close existing file handler if it exists
            if self.file_handler:
                self.file_handler.close()
                logger.removeHandler(self.file_handler)
            
            self.file_handler = logging.FileHandler(str(LOG_FILE_PATH))
            self.file_handler.setFormatter(logging.Formatter(
                '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
            ))
            logger.addHandler(self.file_handler)
        except Exception as e:
            logger.warning(f"Could not set up log file: {e}")

    def clear_logs(self) -> None:
        """Clear log file with proper handler cleanup"""
        try:
            # Remove and close the file handler
            if self.file_handler:
                logger.removeHandler(self.file_handler)
                self.file_handler.close()
                self.file_handler = None
            
            # Delete the file if it exists
            if LOG_FILE_PATH.exists():
                LOG_FILE_PATH.unlink()
            
            # Recreate logging setup
            self.setup_logging()
            self.append_log("Log file cleared and recreated")
            
        except Exception as e:
            logger.error(f"Error clearing logs: {e}")
            raise
    
    def __del__(self):
        """Cleanup when the service is destroyed"""
        if self.file_handler:
            self.file_handler.close()
    
            
    def save_ui_state(self, values: Dict[str, Any]) -> None:
        """Save current UI state to file"""
        ui_state_file = OUTPUT_PATH / "ui_state.json"
        try:
            with open(ui_state_file, 'w') as f:
                json.dump(values, f, indent=2)
            logger.debug(f"UI state saved: {values}")
        except Exception as e:
            logger.error(f"Error saving UI state: {str(e)}")

    def load_ui_state(self) -> Dict[str, Any]:
        """Load saved UI state"""
        ui_state_file = OUTPUT_PATH / "ui_state.json"
        default_state = {
            "model_type": list(MODEL_TYPES.keys())[0],
            "lora_rank": "128",
            "lora_alpha": "128", 
            "num_epochs": 70,
            "batch_size": 1,
            "learning_rate": 3e-5,
            "save_iterations": 500,
            "training_preset": list(TRAINING_PRESETS.keys())[0]
        }
        
        if not ui_state_file.exists():
            return default_state
            
        try:
            with open(ui_state_file, 'r') as f:
                saved_state = json.load(f)
                # Make sure we have all keys (in case structure changed)
                merged_state = default_state.copy()
                merged_state.update(saved_state)
                return merged_state
        except Exception as e:
            logger.error(f"Error loading UI state: {str(e)}")
            return default_state

    # Modify save_session to also store the UI state at training start
    def save_session(self, params: Dict) -> None:
        """Save training session parameters"""
        session_data = {
            "timestamp": datetime.now().isoformat(),
            "params": params,
            "status": self.get_status(),
            # Add UI state at the time training started
            "initial_ui_state": self.load_ui_state()
        }
        with open(self.session_file, 'w') as f:
            json.dump(session_data, f, indent=2)
    
    def load_session(self) -> Optional[Dict]:
        """Load saved training session"""
        if self.session_file.exists():
            try:
                with open(self.session_file, 'r') as f:
                    return json.load(f)
            except json.JSONDecodeError:
                return None
        return None

    def get_status(self) -> Dict:
        """Get current training status"""
        default_status = {'status': 'stopped', 'message': 'No training in progress'}
        
        if not self.status_file.exists():
            return default_status
                
        try:
            with open(self.status_file, 'r') as f:
                status = json.load(f)
                    
            # Check if process is actually running
            if self.pid_file.exists():
                with open(self.pid_file, 'r') as f:
                    pid = int(f.read().strip())
                if not psutil.pid_exists(pid):
                    # Process died unexpectedly
                    if status['status'] == 'training':
                        # Only log this once by checking if we've already updated the status
                        if not hasattr(self, '_process_terminated_logged') or not self._process_terminated_logged:
                            self.append_log("Training process terminated unexpectedly")
                            self._process_terminated_logged = True
                        status['status'] = 'error'
                        status['message'] = 'Training process terminated unexpectedly'
                        # Update the status file to avoid repeated logging
                        with open(self.status_file, 'w') as f:
                            json.dump(status, f, indent=2)
                    else:
                        status['status'] = 'stopped'
                        status['message'] = 'Training process not found'
            return status
                
        except (json.JSONDecodeError, ValueError):
            return default_status

    def get_logs(self, max_lines: int = 100) -> str:
        """Get training logs with line limit"""
        if self.log_file.exists():
            with open(self.log_file, 'r') as f:
                lines = f.readlines()
                return ''.join(lines[-max_lines:])
        return ""

    def append_log(self, message: str) -> None:
        """Append message to log file and logger"""
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        with open(self.log_file, 'a') as f:
            f.write(f"[{timestamp}] {message}\n")
        logger.info(message)

    def clear_logs(self) -> None:
        """Clear log file"""
        if self.log_file.exists():
            self.log_file.unlink()
        self.append_log("Log file cleared")

    def validate_training_config(self, config: TrainingConfig, model_type: str) -> Optional[str]:
        """Validate training configuration"""
        logger.info(f"Validating config for {model_type}")
        
        try:
            # Basic validation
            if not config.data_root or not Path(config.data_root).exists():
                return f"Invalid data root path: {config.data_root}"
                
            if not config.output_dir:
                return "Output directory not specified"
                
            # Check for required files
            videos_file = Path(config.data_root) / "videos.txt"
            prompts_file = Path(config.data_root) / "prompts.txt"
            
            if not videos_file.exists():
                return f"Missing videos list file: {videos_file}"
            if not prompts_file.exists():
                return f"Missing prompts list file: {prompts_file}"
                
            # Validate file counts match
            video_lines = [l.strip() for l in open(videos_file) if l.strip()]
            prompt_lines = [l.strip() for l in open(prompts_file) if l.strip()]
            
            if not video_lines:
                return "No training files found"
            if len(video_lines) != len(prompt_lines):
                return f"Mismatch between video count ({len(video_lines)}) and prompt count ({len(prompt_lines)})"
                
            # Model-specific validation
            if model_type == "hunyuan_video":
                if config.batch_size > 2:
                    return "Hunyuan model recommended batch size is 1-2"
                if not config.gradient_checkpointing:
                    return "Gradient checkpointing is required for Hunyuan model"
            elif model_type == "ltx_video":
                if config.batch_size > 4:
                    return "LTX model recommended batch size is 1-4"
                    
            logger.info(f"Config validation passed with {len(video_lines)} training files")
            return None
            
        except Exception as e:
            logger.error(f"Error during config validation: {str(e)}")
            return f"Configuration validation failed: {str(e)}"
    
    def start_training(
        self,
        model_type: str,
        lora_rank: str,
        lora_alpha: str,
        num_epochs: int,
        batch_size: int, 
        learning_rate: float,
        save_iterations: int,
        repo_id: str,
        preset_name: str,
        resume_from_checkpoint: Optional[str] = None,
    ) -> Tuple[str, str]:
        """Start training with finetrainers"""
            
        self.clear_logs()

        if not model_type:
            raise ValueError("model_type cannot be empty")
        if model_type not in MODEL_TYPES.values():
            raise ValueError(f"Invalid model_type: {model_type}. Must be one of {list(MODEL_TYPES.values())}")


        logger.info(f"Initializing training with model_type={model_type}")
        
        try:
            # Get absolute paths
            current_dir = Path(__file__).parent.absolute()
            train_script = current_dir.parent / "train.py"

            
            if not train_script.exists():
                error_msg = f"Training script not found at {train_script}"
                logger.error(error_msg)
                return error_msg, "Training script not found"
                
            # Log paths for debugging
            logger.info("Current working directory: %s", current_dir)
            logger.info("Training script path: %s", train_script)
            logger.info("Training data path: %s", TRAINING_PATH)
            
            videos_file, prompts_file = prepare_finetrainers_dataset()
            if videos_file is None or prompts_file is None:
                error_msg = "Failed to generate training lists"
                logger.error(error_msg)
                return error_msg, "Training preparation failed"

            video_count = sum(1 for _ in open(videos_file))
            logger.info(f"Generated training lists with {video_count} files")

            if video_count == 0:
                error_msg = "No training files found"
                logger.error(error_msg)
                return error_msg, "No training data available"


             # Get preset configuration
            preset = TRAINING_PRESETS[preset_name]
            training_buckets = preset["training_buckets"]

            # Get config for selected model type with preset buckets
            if model_type == "hunyuan_video":
                config = TrainingConfig.hunyuan_video_lora(
                    data_path=str(TRAINING_PATH),
                    output_path=str(OUTPUT_PATH),
                    buckets=training_buckets
                )
            else:  # ltx_video
                config = TrainingConfig.ltx_video_lora(
                    data_path=str(TRAINING_PATH),
                    output_path=str(OUTPUT_PATH),
                    buckets=training_buckets
                )
            
            # Update with UI parameters
            config.train_epochs = int(num_epochs)
            config.lora_rank = int(lora_rank)
            config.lora_alpha = int(lora_alpha)
            config.batch_size = int(batch_size)
            config.lr = float(learning_rate)
            config.checkpointing_steps = int(save_iterations)

            # Update with resume_from_checkpoint if provided
            if resume_from_checkpoint:
                config.resume_from_checkpoint = resume_from_checkpoint
                self.append_log(f"Resuming from checkpoint: {resume_from_checkpoint}")
                
            # Common settings for both models
            config.mixed_precision = "bf16"
            config.seed = 42
            config.gradient_checkpointing = True
            config.enable_slicing = True
            config.enable_tiling = True
            config.caption_dropout_p = 0.05

            validation_error = self.validate_training_config(config, model_type)
            if validation_error:
                error_msg = f"Configuration validation failed: {validation_error}"
                logger.error(error_msg)
                return "Error: Invalid configuration", error_msg

            # Configure accelerate parameters
            accelerate_args = [
                "accelerate", "launch",
                "--mixed_precision=bf16",
                "--num_processes=1",
                "--num_machines=1",
                "--dynamo_backend=no"
            ]
            
            accelerate_args.append(str(train_script))
            
            # Convert config to command line arguments
            config_args = config.to_args_list()
            

            logger.debug("Generated args list: %s", config_args)

            # Log the full command for debugging
            command_str = ' '.join(accelerate_args + config_args)
            self.append_log(f"Command: {command_str}")
            logger.info(f"Executing command: {command_str}")
            
            # Set environment variables
            env = os.environ.copy()
            env["NCCL_P2P_DISABLE"] = "1"
            env["TORCH_NCCL_ENABLE_MONITORING"] = "0"
            env["WANDB_MODE"] = "offline"
            env["HF_API_TOKEN"] = HF_API_TOKEN
            env["FINETRAINERS_LOG_LEVEL"] = "DEBUG"  # Added for better debugging
            
            # Start the training process
            process = subprocess.Popen(
                accelerate_args + config_args,
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                start_new_session=True,
                env=env,
                cwd=str(current_dir),
                bufsize=1,
                universal_newlines=True
            )
            
            logger.info(f"Started process with PID: {process.pid}")
            
            with open(self.pid_file, 'w') as f:
                f.write(str(process.pid))
            
            # Save session info including repo_id for later hub upload
            self.save_session({
                "model_type": model_type,
                "lora_rank": lora_rank,
                "lora_alpha": lora_alpha,
                "num_epochs": num_epochs,
                "batch_size": batch_size,
                "learning_rate": learning_rate,
                "save_iterations": save_iterations,
                "repo_id": repo_id,
                "start_time": datetime.now().isoformat()
            })
            
            # Update initial training status
            total_steps = num_epochs * (max(1, video_count) // batch_size)
            self.save_status(
                state='training',
                epoch=0,
                step=0,
                total_steps=total_steps,
                loss=0.0,
                total_epochs=num_epochs,
                message='Training started',
                repo_id=repo_id,
                model_type=model_type
            )
            
            # Start monitoring process output
            self._start_log_monitor(process)
            
            success_msg = f"Started training {model_type} model"
            self.append_log(success_msg)
            logger.info(success_msg)
            
            return success_msg, self.get_logs()
            
        except Exception as e:
            error_msg = f"Error starting training: {str(e)}"
            self.append_log(error_msg)
            logger.exception("Training startup failed")
            traceback.print_exc()  # Added for better error debugging
            return "Error starting training", error_msg
        
        
    def stop_training(self) -> Tuple[str, str]:
        """Stop training process"""
        if not self.pid_file.exists():
            return "No training process found", self.get_logs()
            
        try:
            with open(self.pid_file, 'r') as f:
                pid = int(f.read().strip())
                    
            if psutil.pid_exists(pid):
                os.killpg(os.getpgid(pid), signal.SIGTERM)
                    
            if self.pid_file.exists():
                self.pid_file.unlink()
                    
            self.append_log("Training process stopped")
            self.save_status(state='stopped', message='Training stopped')
                
            return "Training stopped successfully", self.get_logs()
                
        except Exception as e:
            error_msg = f"Error stopping training: {str(e)}"
            self.append_log(error_msg)
            if self.pid_file.exists():
                self.pid_file.unlink()
            return "Error stopping training", error_msg

    def pause_training(self) -> Tuple[str, str]:
        """Pause training process by sending SIGUSR1"""
        if not self.is_training_running():
            return "No training process found", self.get_logs()
            
        try:
            with open(self.pid_file, 'r') as f:
                pid = int(f.read().strip())
                
            if psutil.pid_exists(pid):
                os.kill(pid, signal.SIGUSR1)  # Signal to pause
                self.save_status(state='paused', message='Training paused')
                self.append_log("Training paused")
                
            return "Training paused", self.get_logs()

        except Exception as e:
            error_msg = f"Error pausing training: {str(e)}"
            self.append_log(error_msg)
            return "Error pausing training", error_msg

    def resume_training(self) -> Tuple[str, str]:
        """Resume training process by sending SIGUSR2"""
        if not self.is_training_running():
            return "No training process found", self.get_logs()
            
        try:
            with open(self.pid_file, 'r') as f:
                pid = int(f.read().strip())
                
            if psutil.pid_exists(pid):
                os.kill(pid, signal.SIGUSR2)  # Signal to resume
                self.save_status(state='training', message='Training resumed')
                self.append_log("Training resumed")
                
            return "Training resumed", self.get_logs()

        except Exception as e:
            error_msg = f"Error resuming training: {str(e)}"
            self.append_log(error_msg)
            return "Error resuming training", error_msg

    def is_training_running(self) -> bool:
        """Check if training is currently running"""
        if not self.pid_file.exists():
            return False
            
        try:
            with open(self.pid_file, 'r') as f:
                pid = int(f.read().strip())
            
            # Check if process exists AND is a Python process running train.py
            if psutil.pid_exists(pid):
                try:
                    process = psutil.Process(pid)
                    cmdline = process.cmdline()
                    # Check if it's a Python process running train.py
                    return any('train.py' in cmd for cmd in cmdline)
                except (psutil.NoSuchProcess, psutil.AccessDenied):
                    return False
            return False
        except:
            return False

    def recover_interrupted_training(self) -> Dict[str, Any]:
        """Attempt to recover interrupted training
        
        Returns:
            Dict with recovery status and UI updates
        """
        status = self.get_status()
        ui_updates = {}
        
        # If status indicates training but process isn't running, try to recover
        if status.get('status') == 'training' and not self.is_training_running():
            logger.info("Detected interrupted training session, attempting to recover...")
            
            # Get the latest checkpoint
            last_session = self.load_session()
            if not last_session:
                logger.warning("No session data found for recovery")
                # Set buttons for no active training
                ui_updates = {
                    "start_btn": {"interactive": True, "variant": "primary"},
                    "stop_btn": {"interactive": False, "variant": "secondary"},
                    "pause_resume_btn": {"interactive": False, "variant": "secondary"}
                }
                return {"status": "error", "message": "No session data found", "ui_updates": ui_updates}
                    
            # Find the latest checkpoint
            checkpoints = list(OUTPUT_PATH.glob("checkpoint-*"))
            if not checkpoints:
                logger.warning("No checkpoints found for recovery")
                # Set buttons for no active training
                ui_updates = {
                    "start_btn": {"interactive": True, "variant": "primary"},
                    "stop_btn": {"interactive": False, "variant": "secondary"},
                    "pause_resume_btn": {"interactive": False, "variant": "secondary"}
                }
                return {"status": "error", "message": "No checkpoints found", "ui_updates": ui_updates}
                    
            latest_checkpoint = max(checkpoints, key=os.path.getmtime)
            checkpoint_step = int(latest_checkpoint.name.split("-")[1])
            
            logger.info(f"Found checkpoint at step {checkpoint_step}, attempting to resume")
            
            # Extract parameters from the saved session (not current UI state)
            # This ensures we use the original training parameters
            params = last_session.get('params', {})
            initial_ui_state = last_session.get('initial_ui_state', {})
            
            # Add UI updates to restore the training parameters in the UI
            # This shows the user what values are being used for the resumed training
            ui_updates.update({
                "model_type": gr.update(value=params.get('model_type', list(MODEL_TYPES.keys())[0])),
                "lora_rank": gr.update(value=params.get('lora_rank', "128")),
                "lora_alpha": gr.update(value=params.get('lora_alpha', "128")),
                "num_epochs": gr.update(value=params.get('num_epochs', 70)),
                "batch_size": gr.update(value=params.get('batch_size', 1)),
                "learning_rate": gr.update(value=params.get('learning_rate', 3e-5)),
                "save_iterations": gr.update(value=params.get('save_iterations', 500)),
                "training_preset": gr.update(value=params.get('preset_name', list(TRAINING_PRESETS.keys())[0]))
            })
            
            # Attempt to resume training using the ORIGINAL parameters
            try:
                # Extract required parameters from the session
                model_type = params.get('model_type')
                lora_rank = params.get('lora_rank')
                lora_alpha = params.get('lora_alpha')
                num_epochs = params.get('num_epochs')
                batch_size = params.get('batch_size')
                learning_rate = params.get('learning_rate')
                save_iterations = params.get('save_iterations')
                repo_id = params.get('repo_id')
                preset_name = params.get('preset_name', list(TRAINING_PRESETS.keys())[0])
                
                # Attempt to resume training
                result = self.start_training(
                    model_type=model_type,
                    lora_rank=lora_rank,
                    lora_alpha=lora_alpha,
                    num_epochs=num_epochs,
                    batch_size=batch_size,
                    learning_rate=learning_rate,
                    save_iterations=save_iterations,
                    repo_id=repo_id,
                    preset_name=preset_name,
                    resume_from_checkpoint=str(latest_checkpoint)
                )
                
                # Set buttons for active training
                ui_updates.update({
                    "start_btn": {"interactive": False, "variant": "secondary"},
                    "stop_btn": {"interactive": True, "variant": "stop"},
                    "pause_resume_btn": {"interactive": True, "variant": "secondary"}
                })
                
                return {
                    "status": "recovered", 
                    "message": f"Training resumed from checkpoint {checkpoint_step}",
                    "result": result,
                    "ui_updates": ui_updates
                }
            except Exception as e:
                logger.error(f"Failed to resume training: {str(e)}")
                # Set buttons for no active training
                ui_updates.update({
                    "start_btn": {"interactive": True, "variant": "primary"},
                    "stop_btn": {"interactive": False, "variant": "secondary"},
                    "pause_resume_btn": {"interactive": False, "variant": "secondary"}
                })
                return {"status": "error", "message": f"Failed to resume: {str(e)}", "ui_updates": ui_updates}
        elif self.is_training_running():
            # Process is still running, set buttons accordingly
            ui_updates = {
                "start_btn": {"interactive": False, "variant": "secondary"},
                "stop_btn": {"interactive": True, "variant": "stop"},
                "pause_resume_btn": {"interactive": True, "variant": "secondary"}
            }
            return {"status": "running", "message": "Training process is running", "ui_updates": ui_updates}
        else:
            # No training process, set buttons to default state
            ui_updates = {
                "start_btn": {"interactive": True, "variant": "primary"},
                "stop_btn": {"interactive": False, "variant": "secondary"},
                "pause_resume_btn": {"interactive": False, "variant": "secondary"}
            }
            return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates}
            
    def clear_training_data(self) -> str:
        """Clear all training data"""
        if self.is_training_running():
            return gr.Error("Cannot clear data while training is running")
            
        try:
            for file in TRAINING_VIDEOS_PATH.glob("*.*"):
                file.unlink()
            for file in TRAINING_PATH.glob("*.*"):
                file.unlink()
            
            self.append_log("Cleared all training data")
            return "Training data cleared successfully"
            
        except Exception as e:
            error_msg = f"Error clearing training data: {str(e)}"
            self.append_log(error_msg)
            return error_msg
    
    def save_status(self, state: str, **kwargs) -> None:
        """Save current training status"""
        status = {
            'status': state,
            'timestamp': datetime.now().isoformat(),
            **kwargs
        }
        if state == "Training started" or state == "initializing":
            gr.Info("Initializing model and dataset..")
        elif state == "training":
            gr.Info("Training started!")
        elif state == "completed":
            gr.Info("Training completed!")

        with open(self.status_file, 'w') as f:
            json.dump(status, f, indent=2)

    def _start_log_monitor(self, process: subprocess.Popen) -> None:
        """Start monitoring process output for logs"""
        
        def monitor():
            self.append_log("Starting log monitor thread")
            
            def read_stream(stream, is_error=False):
                if stream:
                    output = stream.readline()
                    if output:
                        # Remove decode() since output is already a string due to universal_newlines=True
                        line = output.strip()
                        if is_error:
                            #self.append_log(f"ERROR: {line}")
                            #logger.error(line)
                            #logger.info(line)
                            self.append_log(line)
                        else:
                            self.append_log(line)
                            # Parse metrics only from stdout
                            metrics = parse_training_log(line)
                            if metrics:
                                status = self.get_status()
                                status.update(metrics)
                                self.save_status(**status)
                        return True
                return False

            # Create separate threads to monitor stdout and stderr
            def monitor_stream(stream, is_error=False):
                while process.poll() is None:
                    if not read_stream(stream, is_error):
                        time.sleep(0.1)  # Short sleep to avoid CPU thrashing
            
            # Start threads to monitor each stream
            stdout_thread = threading.Thread(target=monitor_stream, args=(process.stdout, False))
            stderr_thread = threading.Thread(target=monitor_stream, args=(process.stderr, True))
            stdout_thread.daemon = True
            stderr_thread.daemon = True
            stdout_thread.start()
            stderr_thread.start()
            
            # Wait for process to complete
            process.wait()
            
            # Wait for threads to finish reading any remaining output
            stdout_thread.join(timeout=2)
            stderr_thread.join(timeout=2)
            
            # Process any remaining output after process ends
            while read_stream(process.stdout):
                pass
            while read_stream(process.stderr, True):
                pass
                    
            # Process finished
            return_code = process.poll()
            if return_code == 0:
                success_msg = "Training completed successfully"
                self.append_log(success_msg)
                gr.Info(success_msg)
                self.save_status(state='completed', message=success_msg)
                
                # Upload final model if repository was specified
                session = self.load_session()
                if session and session['params'].get('repo_id'):
                    repo_id = session['params']['repo_id']
                    latest_run = max(Path(OUTPUT_PATH).glob('*'), key=os.path.getmtime)
                    if self.upload_to_hub(latest_run, repo_id):
                        self.append_log(f"Model uploaded to {repo_id}")
                    else:
                        self.append_log("Failed to upload model to hub")
            else:
                error_msg = f"Training failed with return code {return_code}"
                self.append_log(error_msg)
                logger.error(error_msg)
                self.save_status(state='error', message=error_msg)
            
            # Clean up PID file
            if self.pid_file.exists():
                self.pid_file.unlink()
        
        monitor_thread = threading.Thread(target=monitor)
        monitor_thread.daemon = True
        monitor_thread.start()

    def upload_to_hub(self, model_path: Path, repo_id: str) -> bool:
        """Upload model to Hugging Face Hub
        
        Args:
            model_path: Path to model files
            repo_id: Repository ID (username/model-name)
            
        Returns:
            bool: Whether upload was successful
        """
        try:
            token = os.getenv("HF_API_TOKEN")
            if not token:
                self.append_log("Error: HF_API_TOKEN not set")
                return False
                
            # Create or get repo
            create_repo(repo_id, token=token, repo_type="model", exist_ok=True)
            
            # Upload files
            upload_folder(
                folder_path=str(OUTPUT_PATH),
                repo_id=repo_id,
                repo_type="model",
                commit_message="Training completed"
            )
            
            return True
        except Exception as e:
            self.append_log(f"Error uploading to hub: {str(e)}")
            return False

    def get_model_output_safetensors(self) -> str:
        """Return the path to the model safetensors
        
            
        Returns:
            Path to created ZIP file
        """
        
        model_output_safetensors_path = OUTPUT_PATH / "pytorch_lora_weights.safetensors"
        return str(model_output_safetensors_path)

    def create_training_dataset_zip(self) -> str:
        """Create a ZIP file containing all training data
        
            
        Returns:
            Path to created ZIP file
        """
        # Create temporary zip file
        with tempfile.NamedTemporaryFile(suffix='.zip', delete=False) as temp_zip:
            temp_zip_path = str(temp_zip.name)
            print(f"Creating zip file for {TRAINING_PATH}..")
            try:
                make_archive(TRAINING_PATH, temp_zip_path)
                print(f"Zip file created!")
                return temp_zip_path
            except Exception as e:
                print(f"Failed to create zip: {str(e)}")
                raise gr.Error(f"Failed to create zip: {str(e)}")