File size: 19,312 Bytes
c8cb798
 
 
 
 
 
 
 
 
 
b91a6aa
c8cb798
 
 
b91a6aa
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
 
 
c8cb798
 
 
b91a6aa
c8cb798
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
c8cb798
 
 
 
 
 
 
 
b91a6aa
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8cb798
b91a6aa
c8cb798
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
c8cb798
 
 
 
 
b91a6aa
 
c8cb798
 
 
 
 
b91a6aa
 
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
 
c8cb798
 
b91a6aa
c8cb798
 
 
 
 
b91a6aa
 
 
 
 
 
c8cb798
 
 
b91a6aa
 
c8cb798
b91a6aa
 
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
 
c8cb798
 
b91a6aa
c8cb798
 
 
 
b91a6aa
c8cb798
b91a6aa
 
 
c8cb798
 
b91a6aa
 
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
 
c8cb798
 
b91a6aa
c8cb798
 
 
 
 
 
b91a6aa
 
 
c8cb798
 
b91a6aa
c8cb798
b91a6aa
c8cb798
 
 
 
b91a6aa
c8cb798
b91a6aa
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91a6aa
 
 
 
c8cb798
 
b91a6aa
c8cb798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
"""
Preview service for Video Model Studio

Handles the video generation logic and model integration
"""

import logging
import tempfile
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple, Callable
import time

from vms.config import (
    OUTPUT_PATH, STORAGE_PATH, MODEL_TYPES, TRAINING_PATH,
    DEFAULT_PROMPT_PREFIX, MODEL_VARIANTS
)
from vms.utils import format_time

logger = logging.getLogger(__name__)

class PreviewingService:
    """Handles the video generation logic and model integration"""
    
    def __init__(self):
        """Initialize the preview service"""
        pass
    
    def find_latest_lora_weights(self) -> Optional[str]:
        """Find the latest LoRA weights file"""
        try:
            lora_path = OUTPUT_PATH / "pytorch_lora_weights.safetensors"
            if lora_path.exists():
                return str(lora_path)
            
            # If not found in the expected location, try to find in checkpoints
            checkpoints = list(OUTPUT_PATH.glob("checkpoint-*"))
            if not checkpoints:
                return None
            
            latest_checkpoint = max(checkpoints, key=lambda x: int(x.name.split("-")[1]))
            lora_path = latest_checkpoint / "pytorch_lora_weights.safetensors"
            
            if lora_path.exists():
                return str(lora_path)
            
            return None
        except Exception as e:
            logger.error(f"Error finding LoRA weights: {e}")
            return None
    
    def get_model_variants(self, model_type: str) -> Dict[str, Dict[str, str]]:
        """Get available model variants for the given model type"""
        return MODEL_VARIANTS.get(model_type, {})
    
    def generate_video(
        self,
        model_type: str,
        model_variant: str,
        prompt: str,
        negative_prompt: str,
        prompt_prefix: str,
        width: int,
        height: int,
        num_frames: int,
        guidance_scale: float,
        flow_shift: float,
        lora_weight: float,
        inference_steps: int,
        enable_cpu_offload: bool,
        fps: int,
        conditioning_image: Optional[str] = None
    ) -> Tuple[Optional[str], str, str]:
        """Generate a video using the trained model"""
        try:
            log_messages = []
            
            def log(msg: str):
                log_messages.append(msg)
                logger.info(msg)
                # Return updated log string for UI updates
                return "\n".join(log_messages)
            
            # Find latest LoRA weights
            lora_path = self.find_latest_lora_weights()
            if not lora_path:
                return None, "Error: No LoRA weights found", log("Error: No LoRA weights found in output directory")
            
            # Add prefix to prompt
            if prompt_prefix and not prompt.startswith(prompt_prefix):
                full_prompt = f"{prompt_prefix}{prompt}"
            else:
                full_prompt = prompt
            
            # Create correct num_frames (should be 8*k + 1)
            adjusted_num_frames = ((num_frames - 1) // 8) * 8 + 1
            if adjusted_num_frames != num_frames:
                log(f"Adjusted number of frames from {num_frames} to {adjusted_num_frames} to match model requirements")
                num_frames = adjusted_num_frames
            
            # Get model type (internal name)
            internal_model_type = MODEL_TYPES.get(model_type)
            if not internal_model_type:
                return None, f"Error: Invalid model type {model_type}", log(f"Error: Invalid model type {model_type}")
            
            # Check if model variant is valid for this model type
            variants = self.get_model_variants(internal_model_type)
            if model_variant not in variants:
                # Use default variant if specified one is invalid
                if len(variants) > 0:
                    model_variant = next(iter(variants.keys()))
                    log(f"Warning: Invalid model variant, using default: {model_variant}")
                else:
                    # Fall back to default IDs if no variants defined
                    if internal_model_type == "wan":
                        model_variant = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
                    elif internal_model_type == "ltx_video":
                        model_variant = "Lightricks/LTX-Video"
                    elif internal_model_type == "hunyuan_video":
                        model_variant = "hunyuanvideo-community/HunyuanVideo"
                    log(f"Warning: No variants defined for model type, using default: {model_variant}")
            
            # Check if this is an image-to-video model but no image was provided
            variant_info = variants.get(model_variant, {})
            if variant_info.get("type") == "image-to-video" and not conditioning_image:
                return None, "Error: This model requires a conditioning image", log("Error: This model variant requires a conditioning image but none was provided")
            
            log(f"Generating video with model type: {internal_model_type}")
            log(f"Using model variant: {model_variant}")
            log(f"Using LoRA weights from: {lora_path}")
            log(f"Resolution: {width}x{height}, Frames: {num_frames}, FPS: {fps}")
            log(f"Guidance Scale: {guidance_scale}, Flow Shift: {flow_shift}, LoRA Weight: {lora_weight}")
            log(f"Prompt: {full_prompt}")
            log(f"Negative Prompt: {negative_prompt}")
            
            # Import required components based on model type
            if internal_model_type == "wan":
                return self.generate_wan_video(
                    full_prompt, negative_prompt, width, height, num_frames,
                    guidance_scale, flow_shift, lora_path, lora_weight,
                    inference_steps, enable_cpu_offload, fps, log,
                    model_variant, conditioning_image
                )
            elif internal_model_type == "ltx_video":
                return self.generate_ltx_video(
                    full_prompt, negative_prompt, width, height, num_frames,
                    guidance_scale, flow_shift, lora_path, lora_weight,
                    inference_steps, enable_cpu_offload, fps, log,
                    model_variant, conditioning_image
                )
            elif internal_model_type == "hunyuan_video":
                return self.generate_hunyuan_video(
                    full_prompt, negative_prompt, width, height, num_frames,
                    guidance_scale, flow_shift, lora_path, lora_weight,
                    inference_steps, enable_cpu_offload, fps, log,
                    model_variant, conditioning_image
                )
            else:
                return None, f"Error: Unsupported model type {internal_model_type}", log(f"Error: Unsupported model type {internal_model_type}")
        
        except Exception as e:
            logger.exception("Error generating video")
            return None, f"Error: {str(e)}", f"Exception occurred: {str(e)}"
    
    def generate_wan_video(
        self,
        prompt: str,
        negative_prompt: str,
        width: int,
        height: int,
        num_frames: int,
        guidance_scale: float,
        flow_shift: float,
        lora_path: str,
        lora_weight: float,
        inference_steps: int,
        enable_cpu_offload: bool,
        fps: int,
        log_fn: Callable,
        model_variant: str = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
        conditioning_image: Optional[str] = None
    ) -> Tuple[Optional[str], str, str]:
        """Generate video using Wan model"""

        try:
            import torch
            from diffusers import AutoencoderKLWan, WanPipeline
            from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
            from diffusers.utils import export_to_video
            from PIL import Image
            import os

            start_time = torch.cuda.Event(enable_timing=True)
            end_time = torch.cuda.Event(enable_timing=True)
        
            
            log_fn("Importing Wan model components...")
            
            log_fn(f"Loading VAE from {model_variant}...")
            vae = AutoencoderKLWan.from_pretrained(model_variant, subfolder="vae", torch_dtype=torch.float32)
            
            log_fn(f"Loading transformer from {model_variant}...")
            pipe = WanPipeline.from_pretrained(model_variant, vae=vae, torch_dtype=torch.bfloat16)
            
            log_fn(f"Configuring scheduler with flow_shift={flow_shift}...")
            pipe.scheduler = UniPCMultistepScheduler.from_config(
                pipe.scheduler.config, 
                flow_shift=flow_shift
            )
            
            log_fn("Moving pipeline to CUDA device...")
            pipe.to("cuda")
            
            if enable_cpu_offload:
                log_fn("Enabling model CPU offload...")
                pipe.enable_model_cpu_offload()
            
            log_fn(f"Loading LoRA weights from {lora_path} with weight {lora_weight}...")
            pipe.load_lora_weights(lora_path)
            pipe.fuse_lora(lora_weight)
            
            # Create temporary file for the output
            with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
                output_path = temp_file.name
            
            log_fn("Starting video generation...")
            start_time.record()
            
            # Check if this is an image-to-video model
            is_i2v = "I2V" in model_variant
            
            if is_i2v and conditioning_image:
                log_fn(f"Loading conditioning image from {conditioning_image}...")
                image = Image.open(conditioning_image).convert("RGB")
                image = image.resize((width, height))
                
                log_fn("Generating video with image conditioning...")
                output = pipe(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    image=image,
                    height=height,
                    width=width,
                    num_frames=num_frames,
                    guidance_scale=guidance_scale,
                    num_inference_steps=inference_steps,
                ).frames[0]
            else:
                log_fn("Generating video with text-only conditioning...")
                output = pipe(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    height=height,
                    width=width,
                    num_frames=num_frames,
                    guidance_scale=guidance_scale,
                    num_inference_steps=inference_steps,
                ).frames[0]
            
            end_time.record()
            torch.cuda.synchronize()
            generation_time = start_time.elapsed_time(end_time) / 1000  # Convert to seconds
            
            log_fn(f"Video generation completed in {format_time(generation_time)}")
            log_fn(f"Exporting video to {output_path}...")
            
            export_to_video(output, output_path, fps=fps)
            
            log_fn("Video generation and export completed successfully!")
            
            # Clean up CUDA memory
            pipe = None
            torch.cuda.empty_cache()
            
            return output_path, "Video generated successfully!", log_fn(f"Generation completed in {format_time(generation_time)}")
        
        except Exception as e:
            log_fn(f"Error generating video with Wan: {str(e)}")
            # Clean up CUDA memory
            torch.cuda.empty_cache()
            return None, f"Error: {str(e)}", log_fn(f"Exception occurred: {str(e)}")
    
    def generate_ltx_video(
        self,
        prompt: str,
        negative_prompt: str,
        width: int,
        height: int,
        num_frames: int,
        guidance_scale: float,
        flow_shift: float,
        lora_path: str,
        lora_weight: float,
        inference_steps: int,
        enable_cpu_offload: bool,
        fps: int,
        log_fn: Callable,
        model_variant: str = "Lightricks/LTX-Video",
        conditioning_image: Optional[str] = None
    ) -> Tuple[Optional[str], str, str]:
        """Generate video using LTX model"""

        try:
            import torch
            from diffusers import LTXPipeline
            from diffusers.utils import export_to_video
            from PIL import Image
            
            start_time = torch.cuda.Event(enable_timing=True)
            end_time = torch.cuda.Event(enable_timing=True)
        
            log_fn("Importing LTX model components...")
            
            log_fn(f"Loading pipeline from {model_variant}...")
            pipe = LTXPipeline.from_pretrained(model_variant, torch_dtype=torch.bfloat16)
            
            log_fn("Moving pipeline to CUDA device...")
            pipe.to("cuda")
            
            if enable_cpu_offload:
                log_fn("Enabling model CPU offload...")
                pipe.enable_model_cpu_offload()
            
            log_fn(f"Loading LoRA weights from {lora_path} with weight {lora_weight}...")
            pipe.load_lora_weights(lora_path)
            pipe.fuse_lora(lora_weight)
            
            # Create temporary file for the output
            with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
                output_path = temp_file.name
            
            log_fn("Starting video generation...")
            start_time.record()
            
            # LTX doesn't currently support image conditioning in the standard way
            video = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                height=height,
                width=width,
                num_frames=num_frames,
                guidance_scale=guidance_scale,
                decode_timestep=0.03,
                decode_noise_scale=0.025,
                num_inference_steps=inference_steps,
            ).frames[0]
            
            end_time.record()
            torch.cuda.synchronize()
            generation_time = start_time.elapsed_time(end_time) / 1000  # Convert to seconds
            
            log_fn(f"Video generation completed in {format_time(generation_time)}")
            log_fn(f"Exporting video to {output_path}...")
            
            export_to_video(video, output_path, fps=fps)
            
            log_fn("Video generation and export completed successfully!")
            
            # Clean up CUDA memory
            pipe = None
            torch.cuda.empty_cache()
            
            return output_path, "Video generated successfully!", log_fn(f"Generation completed in {format_time(generation_time)}")
        
        except Exception as e:
            log_fn(f"Error generating video with LTX: {str(e)}")
            # Clean up CUDA memory
            torch.cuda.empty_cache()
            return None, f"Error: {str(e)}", log_fn(f"Exception occurred: {str(e)}")
    
    def generate_hunyuan_video(
        self,
        prompt: str,
        negative_prompt: str,
        width: int,
        height: int,
        num_frames: int,
        guidance_scale: float,
        flow_shift: float,
        lora_path: str,
        lora_weight: float,
        inference_steps: int,
        enable_cpu_offload: bool,
        fps: int,
        log_fn: Callable,
        model_variant: str = "hunyuanvideo-community/HunyuanVideo",
        conditioning_image: Optional[str] = None
    ) -> Tuple[Optional[str], str, str]:
        """Generate video using HunyuanVideo model"""

        
        try:
            import torch
            from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel, AutoencoderKLHunyuanVideo
            from diffusers.utils import export_to_video
            
            start_time = torch.cuda.Event(enable_timing=True)
            end_time = torch.cuda.Event(enable_timing=True)

            log_fn("Importing HunyuanVideo model components...")
            
            log_fn(f"Loading transformer from {model_variant}...")
            transformer = HunyuanVideoTransformer3DModel.from_pretrained(
                model_variant, 
                subfolder="transformer", 
                torch_dtype=torch.bfloat16
            )
            
            log_fn(f"Loading pipeline from {model_variant}...")
            pipe = HunyuanVideoPipeline.from_pretrained(
                model_variant, 
                transformer=transformer,
                torch_dtype=torch.float16
            )
            
            log_fn("Enabling VAE tiling for better memory usage...")
            pipe.vae.enable_tiling()
            
            log_fn("Moving pipeline to CUDA device...")
            pipe.to("cuda")
            
            if enable_cpu_offload:
                log_fn("Enabling model CPU offload...")
                pipe.enable_model_cpu_offload()
            
            log_fn(f"Loading LoRA weights from {lora_path} with weight {lora_weight}...")
            pipe.load_lora_weights(lora_path)
            pipe.fuse_lora(lora_weight)
            
            # Create temporary file for the output
            with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
                output_path = temp_file.name
            
            log_fn("Starting video generation...")
            start_time.record()
            
            # Fix for Issue #2: The pipe() expected list rather than float
            # Make sure negative_prompt is a list or None
            neg_prompt = [negative_prompt] if negative_prompt else None
            
            output = pipe(
                prompt=prompt,
                negative_prompt=neg_prompt,
                height=height,
                width=width,
                num_frames=num_frames,
                guidance_scale=guidance_scale,
                true_cfg_scale=1.0,
                num_inference_steps=inference_steps,
            ).frames[0]
            
            end_time.record()
            torch.cuda.synchronize()
            generation_time = start_time.elapsed_time(end_time) / 1000  # Convert to seconds
            
            log_fn(f"Video generation completed in {format_time(generation_time)}")
            log_fn(f"Exporting video to {output_path}...")
            
            export_to_video(output, output_path, fps=fps)
            
            log_fn("Video generation and export completed successfully!")
            
            # Clean up CUDA memory
            pipe = None
            torch.cuda.empty_cache()
            
            return output_path, "Video generated successfully!", log_fn(f"Generation completed in {format_time(generation_time)}")
        
        except Exception as e:
            log_fn(f"Error generating video with HunyuanVideo: {str(e)}")
            # Clean up CUDA memory
            torch.cuda.empty_cache()
            return None, f"Error: {str(e)}", log_fn(f"Exception occurred: {str(e)}")