Spaces:
Running
Running
File size: 22,129 Bytes
c8cb798 b91a6aa c8cb798 89bbef2 c8cb798 89bbef2 b91a6aa c8cb798 89bbef2 c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa c8cb798 b91a6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
"""
Preview tab for Video Model Studio UI
"""
import gradio as gr
import logging
from pathlib import Path
from typing import Dict, Any, List, Optional, Tuple
import time
from vms.utils import BaseTab
from vms.config import (
MODEL_TYPES, DEFAULT_PROMPT_PREFIX
)
logger = logging.getLogger(__name__)
class PreviewTab(BaseTab):
"""Preview tab for testing trained models"""
def __init__(self, app_state):
super().__init__(app_state)
self.id = "preview_tab"
self.title = "5️⃣ Preview"
def create(self, parent=None) -> gr.TabItem:
"""Create the Preview tab UI components"""
with gr.TabItem(self.title, id=self.id) as tab:
with gr.Row():
gr.Markdown("## Preview your model")
with gr.Row():
with gr.Column(scale=2):
self.components["prompt"] = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=3
)
self.components["negative_prompt"] = gr.Textbox(
label="Negative Prompt",
placeholder="Enter negative prompt here...",
lines=3,
value="worst quality, low quality, blurry, jittery, distorted, ugly, deformed, disfigured, messy background"
)
self.components["prompt_prefix"] = gr.Textbox(
label="Global Prompt Prefix",
placeholder="Prefix to add to all prompts",
value=DEFAULT_PROMPT_PREFIX
)
with gr.Row():
# Get the currently selected model type from training tab if possible
default_model = self.get_default_model_type()
# Make model_type read-only (disabled), as it must match what was trained
self.components["model_type"] = gr.Dropdown(
choices=list(MODEL_TYPES.keys()),
label="Model Type (from training)",
value=default_model,
interactive=False
)
# Add model variant selection based on model type
self.components["model_variant"] = gr.Dropdown(
label="Model Variant",
choices=self.get_variant_choices(default_model),
value=self.get_default_variant(default_model)
)
# Add image input for image-to-video models
self.components["conditioning_image"] = gr.Image(
label="Conditioning Image (for Image-to-Video models)",
type="filepath",
visible=False
)
with gr.Row():
self.components["resolution_preset"] = gr.Dropdown(
choices=["480p", "720p"],
label="Resolution Preset",
value="480p"
)
with gr.Row():
self.components["width"] = gr.Number(
label="Width",
value=832,
precision=0
)
self.components["height"] = gr.Number(
label="Height",
value=480,
precision=0
)
with gr.Row():
self.components["num_frames"] = gr.Slider(
label="Number of Frames",
minimum=1,
maximum=257,
step=8,
value=49
)
self.components["fps"] = gr.Slider(
label="FPS",
minimum=1,
maximum=60,
step=1,
value=16
)
with gr.Row():
self.components["guidance_scale"] = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=5.0
)
self.components["flow_shift"] = gr.Slider(
label="Flow Shift",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.0
)
with gr.Row():
self.components["lora_weight"] = gr.Slider(
label="LoRA Weight",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7
)
self.components["inference_steps"] = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=100,
step=1,
value=30
)
self.components["enable_cpu_offload"] = gr.Checkbox(
label="Enable Model CPU Offload (for low-VRAM GPUs)",
value=True
)
self.components["generate_btn"] = gr.Button(
"Generate Video",
variant="primary"
)
with gr.Column(scale=3):
self.components["preview_video"] = gr.Video(
label="Generated Video",
interactive=False
)
self.components["status"] = gr.Textbox(
label="Status",
interactive=False
)
with gr.Accordion("Log", open=True):
self.components["log"] = gr.TextArea(
label="Generation Log",
interactive=False,
lines=15
)
return tab
def get_variant_choices(self, model_type: str) -> List[str]:
"""Get model variant choices based on model type"""
# Convert UI display name to internal name
internal_type = MODEL_TYPES.get(model_type)
if not internal_type:
return []
# Get variants from preview service
variants = self.app.previewing.get_model_variants(internal_type)
if not variants:
return []
# Format choices with display name and description
choices = []
for model_id, info in variants.items():
choices.append(f"{model_id} - {info.get('name', '')}")
return choices
def get_default_variant(self, model_type: str) -> str:
"""Get default model variant for the model type"""
choices = self.get_variant_choices(model_type)
if choices:
return choices[0]
return ""
def get_default_model_type(self) -> str:
"""Get the currently selected model type from training tab"""
try:
# Try to get the model type from UI state
ui_state = self.app.training.load_ui_state()
model_type = ui_state.get("model_type")
# Make sure it's a valid model type
if model_type in MODEL_TYPES:
return model_type
# If we couldn't get a valid model type, try to get it from the training tab directly
if hasattr(self.app, 'tabs') and 'train_tab' in self.app.tabs:
train_tab = self.app.tabs['train_tab']
if hasattr(train_tab, 'components') and 'model_type' in train_tab.components:
train_model_type = train_tab.components['model_type'].value
if train_model_type in MODEL_TYPES:
return train_model_type
# Fallback to first model type
return list(MODEL_TYPES.keys())[0]
except Exception as e:
logger.warning(f"Failed to get default model type: {e}")
return list(MODEL_TYPES.keys())[0]
def extract_model_id(self, variant_choice: str) -> str:
"""Extract model ID from variant choice string"""
if " - " in variant_choice:
return variant_choice.split(" - ")[0].strip()
return variant_choice
def get_variant_type(self, model_type: str, model_variant: str) -> str:
"""Get the variant type (text-to-video or image-to-video)"""
# Convert UI display name to internal name
internal_type = MODEL_TYPES.get(model_type)
if not internal_type:
return "text-to-video"
# Extract model_id from variant choice
model_id = self.extract_model_id(model_variant)
# Get variants from preview service
variants = self.app.previewing.get_model_variants(internal_type)
variant_info = variants.get(model_id, {})
# Return the variant type or default to text-to-video
return variant_info.get("type", "text-to-video")
def connect_events(self) -> None:
"""Connect event handlers to UI components"""
# Update resolution when preset changes
self.components["resolution_preset"].change(
fn=self.update_resolution,
inputs=[self.components["resolution_preset"]],
outputs=[
self.components["width"],
self.components["height"],
self.components["flow_shift"]
]
)
# Update model_variant choices when model_type changes or tab is selected
if hasattr(self.app, 'tabs_component') and self.app.tabs_component is not None:
self.app.tabs_component.select(
fn=self.sync_model_type_and_variants,
inputs=[],
outputs=[
self.components["model_type"],
self.components["model_variant"]
]
)
# Update variant-specific UI elements when variant changes
self.components["model_variant"].change(
fn=self.update_variant_ui,
inputs=[
self.components["model_type"],
self.components["model_variant"]
],
outputs=[
self.components["conditioning_image"]
]
)
# Load preview UI state when the tab is selected
if hasattr(self.app, 'tabs_component') and self.app.tabs_component is not None:
self.app.tabs_component.select(
fn=self.load_preview_state,
inputs=[],
outputs=[
self.components["prompt"],
self.components["negative_prompt"],
self.components["prompt_prefix"],
self.components["width"],
self.components["height"],
self.components["num_frames"],
self.components["fps"],
self.components["guidance_scale"],
self.components["flow_shift"],
self.components["lora_weight"],
self.components["inference_steps"],
self.components["enable_cpu_offload"],
self.components["model_variant"]
]
)
# Save preview UI state when values change
for component_name in [
"prompt", "negative_prompt", "prompt_prefix", "model_variant", "resolution_preset",
"width", "height", "num_frames", "fps", "guidance_scale", "flow_shift",
"lora_weight", "inference_steps", "enable_cpu_offload"
]:
if component_name in self.components:
self.components[component_name].change(
fn=self.save_preview_state_value,
inputs=[self.components[component_name]],
outputs=[]
)
# Generate button click
self.components["generate_btn"].click(
fn=self.generate_video,
inputs=[
self.components["model_type"],
self.components["model_variant"],
self.components["prompt"],
self.components["negative_prompt"],
self.components["prompt_prefix"],
self.components["width"],
self.components["height"],
self.components["num_frames"],
self.components["guidance_scale"],
self.components["flow_shift"],
self.components["lora_weight"],
self.components["inference_steps"],
self.components["enable_cpu_offload"],
self.components["fps"],
self.components["conditioning_image"]
],
outputs=[
self.components["preview_video"],
self.components["status"],
self.components["log"]
]
)
def update_variant_ui(self, model_type: str, model_variant: str) -> Dict[str, Any]:
"""Update UI based on the selected model variant"""
variant_type = self.get_variant_type(model_type, model_variant)
# Show conditioning image input only for image-to-video models
show_conditioning_image = variant_type == "image-to-video"
return {
self.components["conditioning_image"]: gr.Image(visible=show_conditioning_image)
}
def sync_model_type_and_variants(self) -> Tuple[str, str]:
"""Sync model type with training tab when preview tab is selected and update variant choices"""
model_type = self.get_default_model_type()
model_variant = self.get_default_variant(model_type)
return model_type, model_variant
def update_resolution(self, preset: str) -> Tuple[int, int, float]:
"""Update resolution and flow shift based on preset"""
if preset == "480p":
return 832, 480, 3.0
elif preset == "720p":
return 1280, 720, 5.0
else:
return 832, 480, 3.0
def load_preview_state(self) -> Tuple:
"""Load saved preview UI state"""
# Try to get the saved state
try:
state = self.app.training.load_ui_state()
preview_state = state.get("preview", {})
# Get model type (can't be changed in UI)
model_type = self.get_default_model_type()
# If model_variant not in choices for current model_type, use default
model_variant = preview_state.get("model_variant", "")
variant_choices = self.get_variant_choices(model_type)
if model_variant not in variant_choices and variant_choices:
model_variant = variant_choices[0]
return (
preview_state.get("prompt", ""),
preview_state.get("negative_prompt", "worst quality, low quality, blurry, jittery, distorted, ugly, deformed, disfigured, messy background"),
preview_state.get("prompt_prefix", DEFAULT_PROMPT_PREFIX),
preview_state.get("width", 832),
preview_state.get("height", 480),
preview_state.get("num_frames", 49),
preview_state.get("fps", 16),
preview_state.get("guidance_scale", 5.0),
preview_state.get("flow_shift", 3.0),
preview_state.get("lora_weight", 0.7),
preview_state.get("inference_steps", 30),
preview_state.get("enable_cpu_offload", True),
model_variant
)
except Exception as e:
logger.error(f"Error loading preview state: {e}")
# Return defaults if loading fails
return (
"",
"worst quality, low quality, blurry, jittery, distorted, ugly, deformed, disfigured, messy background",
DEFAULT_PROMPT_PREFIX,
832, 480, 49, 16, 5.0, 3.0, 0.7, 30, True,
self.get_default_variant(self.get_default_model_type())
)
def save_preview_state_value(self, value: Any) -> None:
"""Save an individual preview state value"""
try:
# Get the component name from the event context
import inspect
frame = inspect.currentframe()
frame = inspect.getouterframes(frame)[1]
event_context = frame.frame.f_locals
component = event_context.get('component')
if component is None:
return
# Find the component name
component_name = None
for name, comp in self.components.items():
if comp == component:
component_name = name
break
if component_name is None:
return
# Load current state
state = self.app.training.load_ui_state()
if "preview" not in state:
state["preview"] = {}
# Update the value
state["preview"][component_name] = value
# Save state
self.app.training.save_ui_state(state)
except Exception as e:
logger.error(f"Error saving preview state: {e}")
def generate_video(
self,
model_type: str,
model_variant: str,
prompt: str,
negative_prompt: str,
prompt_prefix: str,
width: int,
height: int,
num_frames: int,
guidance_scale: float,
flow_shift: float,
lora_weight: float,
inference_steps: int,
enable_cpu_offload: bool,
fps: int,
conditioning_image: Optional[str] = None
) -> Tuple[Optional[str], str, str]:
"""Handler for generate button click, delegates to preview service"""
# Save all the parameters to preview state before generating
try:
state = self.app.training.load_ui_state()
if "preview" not in state:
state["preview"] = {}
# Extract model ID from variant choice
model_variant_id = self.extract_model_id(model_variant)
# Update all values
preview_state = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"prompt_prefix": prompt_prefix,
"model_type": model_type,
"model_variant": model_variant,
"width": width,
"height": height,
"num_frames": num_frames,
"fps": fps,
"guidance_scale": guidance_scale,
"flow_shift": flow_shift,
"lora_weight": lora_weight,
"inference_steps": inference_steps,
"enable_cpu_offload": enable_cpu_offload
}
state["preview"] = preview_state
self.app.training.save_ui_state(state)
except Exception as e:
logger.error(f"Error saving preview state before generation: {e}")
# Clear the log display at the start to make room for new logs
# Yield and sleep briefly to allow UI update
yield None, "Starting generation...", ""
time.sleep(0.1)
# Extract model ID from variant choice string
model_variant_id = self.extract_model_id(model_variant)
# Use streaming updates to provide real-time feedback during generation
def generate_with_updates():
# Initial UI update
yield None, "Initializing generation...", "Starting video generation process..."
# Start actual generation
result = self.app.previewing.generate_video(
model_type=model_type,
model_variant=model_variant_id,
prompt=prompt,
negative_prompt=negative_prompt,
prompt_prefix=prompt_prefix,
width=width,
height=height,
num_frames=num_frames,
guidance_scale=guidance_scale,
flow_shift=flow_shift,
lora_weight=lora_weight,
inference_steps=inference_steps,
enable_cpu_offload=enable_cpu_offload,
fps=fps,
conditioning_image=conditioning_image
)
# Return final result
return result
# Return the generator for streaming updates
return generate_with_updates() |