File size: 5,942 Bytes
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import pathlib
from typing import Any, Callable, Dict, Iterable, Optional

import torch
from tqdm.auto import tqdm

from .. import utils


class DistributedDataPreprocessor:
    def __init__(
        self,
        rank: int,
        num_items: int,
        processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]],
        save_dir: str,
    ) -> None:
        self._rank = rank
        self._num_items = num_items
        self._processor_fn = processor_fn
        self._save_dir = pathlib.Path(save_dir)

        self._cached_samples = []
        self._preprocessed_iterator: "PreprocessedDataIterable" = None

        self._save_dir.mkdir(parents=True, exist_ok=True)

        subdirectories = [f for f in self._save_dir.iterdir() if f.is_dir()]
        utils.delete_files(subdirectories)

    def consume(
        self,
        data_type: str,
        components: Dict[str, Any],
        data_iterator,
        generator: Optional[torch.Generator] = None,
        cache_samples: bool = False,
        use_cached_samples: bool = False,
        drop_samples: bool = False,
    ) -> Iterable[Dict[str, Any]]:
        if data_type not in self._processor_fn.keys():
            raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
        if cache_samples:
            if use_cached_samples:
                raise ValueError("Cannot cache and use cached samples at the same time.")
            if drop_samples:
                raise ValueError("Cannot cache and drop samples at the same time.")

        for i in tqdm(range(self._num_items), desc=f"Rank {self._rank}", total=self._num_items):
            if use_cached_samples:
                item = self._cached_samples[i]
            else:
                item = next(data_iterator)
                if cache_samples:
                    self._cached_samples.append(item)
            item = self._processor_fn[data_type](**item, **components, generator=generator)
            _save_item(self._rank, i, item, self._save_dir, data_type)

        if drop_samples:
            del self._cached_samples
            self._cached_samples = []
            utils.free_memory()

        self._preprocessed_iterator = PreprocessedDataIterable(self._rank, self._save_dir, data_type)
        return iter(self._preprocessed_iterator)

    def consume_once(
        self,
        data_type: str,
        components: Dict[str, Any],
        data_iterator,
        generator: Optional[torch.Generator] = None,
        cache_samples: bool = False,
        use_cached_samples: bool = False,
        drop_samples: bool = False,
    ) -> Iterable[Dict[str, Any]]:
        if data_type not in self._processor_fn.keys():
            raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
        if cache_samples:
            if use_cached_samples:
                raise ValueError("Cannot cache and use cached samples at the same time.")
            if drop_samples:
                raise ValueError("Cannot cache and drop samples at the same time.")

        for i in tqdm(range(self._num_items), desc=f"Processing data on rank {self._rank}", total=self._num_items):
            if use_cached_samples:
                item = self._cached_samples[i]
            else:
                item = next(data_iterator)
                if cache_samples:
                    self._cached_samples.append(item)
            item = self._processor_fn[data_type](**item, **components, generator=generator)
            _save_item(self._rank, i, item, self._save_dir, data_type)

        if drop_samples:
            del self._cached_samples
            self._cached_samples = []
            utils.free_memory()

        self._preprocessed_iterator = PreprocessedOnceDataIterable(self._rank, self._save_dir, data_type)
        return iter(self._preprocessed_iterator)

    @property
    def requires_data(self):
        if self._preprocessed_iterator is None:
            return True
        return self._preprocessed_iterator.requires_data


class PreprocessedDataIterable:
    def __init__(self, rank: int, save_dir: str, data_type: str) -> None:
        self._rank = rank
        self._save_dir = pathlib.Path(save_dir)
        self._num_items = len(list(self._save_dir.glob(f"{data_type}-{rank}-*.pt")))
        self._data_type = data_type

        self._requires_data = False

    def __iter__(self) -> Iterable[Dict[str, Any]]:
        for i in range(self._num_items):
            if i == self._num_items - 1:
                self._requires_data = True
            yield _load_item(self._rank, i, self._save_dir, self._data_type)

    def __len__(self) -> int:
        return self._num_items

    @property
    def requires_data(self):
        return self._requires_data


class PreprocessedOnceDataIterable:
    def __init__(self, rank: int, save_dir: str, data_type: str) -> None:
        self._rank = rank
        self._save_dir = pathlib.Path(save_dir)
        self._num_items = len(list(self._save_dir.glob(f"{data_type}-{rank}-*.pt")))
        self._data_type = data_type

        self._requires_data = False

    def __iter__(self) -> Iterable[Dict[str, Any]]:
        index = 0
        while True:
            yield _load_item(self._rank, index, self._save_dir, self._data_type)
            index = (index + 1) % self._num_items

    def __len__(self) -> int:
        return self._num_items

    @property
    def requires_data(self):
        return self._requires_data


def _save_item(rank: int, index: int, item: Dict[str, Any], directory: pathlib.Path, data_type: str) -> None:
    filename = directory / f"{data_type}-{rank}-{index}.pt"
    torch.save(item, filename.as_posix())


def _load_item(rank: int, index: int, directory: pathlib.Path, data_type: str) -> Dict[str, Any]:
    filename = directory / f"{data_type}-{rank}-{index}.pt"
    return torch.load(filename.as_posix(), weights_only=True)