File size: 16,598 Bytes
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import functools
import math
from typing import Any, Callable, Dict, List, Optional, Type, Union

import torch
from torch.distributed.checkpoint.state_dict import (
    StateDictOptions,
    get_optimizer_state_dict,
    set_optimizer_state_dict,
)
from torch.distributed.checkpoint.stateful import Stateful

from .parallel import ParallelBackendEnum
from .utils.import_utils import is_bitsandbytes_available


class OptimizerWrapper(Stateful):
    r"""
    Optimizer wrapper that:
        - allows step/zero_grad on multiple optimizers needed for virtual pipeline stages
        - saves/loading optimizer state_dict at checkpoint
    """

    def __init__(
        self,
        model_parts: List[torch.nn.Module],
        optimizer_cls: Type[torch.optim.Optimizer],
        optimizer_kwargs: Dict[str, Any],
    ) -> None:
        self.optimizer_cls = optimizer_cls
        self.optimizer_kwargs = optimizer_kwargs

        self.optimizers = []
        self.model_parts = model_parts

        for model in self.model_parts:
            optimizer = optimizer_cls(model.parameters(), **optimizer_kwargs)
            self.optimizers.append(optimizer)

    def step(self) -> None:
        for optimizer in self.optimizers:
            optimizer.step()

    def zero_grad(self) -> None:
        for optimizer in self.optimizers:
            optimizer.zero_grad()

    def state_dict(self) -> Dict[str, Any]:
        func = functools.partial(
            get_optimizer_state_dict,
            options=StateDictOptions(flatten_optimizer_state_dict=True),
        )
        return {k: v for sd in map(func, self.model_parts, self.optimizers) for k, v in sd.items()}

    def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
        func = functools.partial(
            set_optimizer_state_dict,
            optim_state_dict=state_dict,
            options=StateDictOptions(flatten_optimizer_state_dict=True),
        )
        list(map(func, self.model_parts, self.optimizers))


class SchedulerWrapper:
    def __init__(
        self, optimizers, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int
    ) -> None:
        self.schedulers = []
        for optimizer in optimizers:
            self.schedulers.append(torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch))

    def step(self) -> None:
        for scheduler in self.schedulers:
            scheduler.step()

    def get_last_lr(self) -> List[float]:
        # TODO(aryan): look into this later. Currently calling it leads to NCCL hang?????
        return {f"lr_{idx}": scheduler.get_last_lr() for idx, scheduler in enumerate(self.schedulers)}

    def get_lr_scheduler_state(self) -> Dict[str, Any]:
        state_dict = {}
        if len(self.schedulers) == 1:
            state_dict["lr_scheduler"] = self.schedulers[0]
        else:
            # For now, pipeline-parallel with looped schedules does not support resharding for lr_scheduler.
            # It should only support saving and loading a distributed checkpoint with the same number of pp ranks
            for idx, lr_scheduler in enumerate(self.schedulers):
                state_dict[f"lr_scheduler_{idx}"] = lr_scheduler
        return state_dict


def get_optimizer(
    parallel_backend: ParallelBackendEnum,
    name: str,
    model_parts: List[torch.nn.Module],
    learning_rate: float = 1e-3,
    beta1: float = 0.9,
    beta2: float = 0.95,
    beta3: float = 0.999,
    epsilon: float = 1e-8,
    weight_decay: float = 1e-4,
    fused: bool = False,
) -> Union[torch.optim.Optimizer, OptimizerWrapper]:
    name = name.lower()

    _raise_errors_if_packages_not_available(name)

    if name == "adam":
        optimizer_cls = torch.optim.Adam
        optimizer_kwargs = {
            "lr": learning_rate,
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
            "fused": fused,
        }
    elif name == "adamw":
        optimizer_cls = torch.optim.AdamW
        optimizer_kwargs = {
            "lr": learning_rate,
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
            "fused": fused,
        }
    elif name == "adam-bnb":
        from bitsandbytes.optim import Adam

        optimizer_cls = Adam
        optimizer_kwargs = {
            "lr": learning_rate,
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
        }
    elif name == "adamw-bnb":
        from bitsandbytes.optim import AdamW

        optimizer_cls = AdamW
        optimizer_kwargs = {
            "lr": learning_rate,
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
        }
    elif name == "adam-bnb-8bit":
        from bitsandbytes.optim import Adam8bit

        optimizer_cls = Adam8bit
        optimizer_kwargs = {
            "lr": learning_rate,
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
        }
    elif name == "adamw-bnb-8bit":
        from bitsandbytes.optim import AdamW8bit

        optimizer_cls = AdamW8bit
        optimizer_kwargs = {
            "lr": learning_rate,
            "betas": (beta1, beta2),
            "eps": epsilon,
            "weight_decay": weight_decay,
        }

    # TODO(aryan): handle bitsandbytes and torchao
    else:
        raise ValueError(f"Unsupported optimizer: {name}")

    if parallel_backend == ParallelBackendEnum.ACCELERATE:
        return get_optimizer_accelerate(model_parts, optimizer_cls, optimizer_kwargs)
    elif parallel_backend == ParallelBackendEnum.PTD:
        return get_optimizer_ptd(model_parts, optimizer_cls, optimizer_kwargs)


def get_optimizer_accelerate(
    model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
) -> torch.optim.Optimizer:
    params = [param for model in model_parts for param in model.parameters() if param.requires_grad]
    optimizer = optimizer_cls(params, **optimizer_kwargs)
    return optimizer


def get_optimizer_ptd(
    model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
) -> OptimizerWrapper:
    return OptimizerWrapper(model_parts, optimizer_cls, optimizer_kwargs)


def get_lr_scheduler(
    parallel_backend: ParallelBackendEnum,
    name: str,
    optimizer: Union[torch.optim.Optimizer, OptimizerWrapper],
    step_rules: Optional[str] = None,
    num_warmup_steps: Optional[int] = None,
    num_training_steps: Optional[int] = None,
    num_cycles: int = 1,
    power: float = 1.0,
    lr_init: float = 1e-3,
    lr_end: float = 1e-7,
    last_epoch: int = -1,
) -> Union[torch.optim.lr_scheduler.LambdaLR, SchedulerWrapper]:
    name = name.lower()
    if name == "constant":
        scheduler_lambda_fn = get_constant_schedule()
    elif name == "constant_with_warmup":
        scheduler_lambda_fn = get_constant_schedule_with_warmup(num_warmup_steps)
    elif name == "piecewise_constant":
        scheduler_lambda_fn = get_piecewise_constant_schedule(step_rules)
    elif name == "linear":
        scheduler_lambda_fn = get_linear_schedule_with_warmup(num_warmup_steps, num_training_steps)
    elif name == "cosine":
        scheduler_lambda_fn = get_cosine_schedule_with_warmup(num_warmup_steps, num_training_steps, num_cycles)
    elif name == "cosine_with_restarts":
        scheduler_lambda_fn = get_cosine_with_hard_restarts_schedule_with_warmup(
            num_warmup_steps, num_training_steps, num_cycles
        )
    elif name == "polynomial":
        scheduler_lambda_fn = get_polynomial_decay_schedule_with_warmup(
            num_warmup_steps, num_training_steps, lr_init, lr_end, power
        )
    else:
        raise ValueError(f"Unsupported scheduler: {name}")

    if parallel_backend == ParallelBackendEnum.ACCELERATE:
        return get_lr_scheduler_accelerate(optimizer, scheduler_lambda_fn, last_epoch)
    elif parallel_backend == ParallelBackendEnum.PTD:
        return get_lr_scheduler_ptd(optimizer, scheduler_lambda_fn, last_epoch)


def get_lr_scheduler_accelerate(
    optimizer: torch.optim.Optimizer,
    scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler],
    last_epoch: int = -1,
) -> torch.optim.lr_scheduler.LambdaLR:
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch)
    return scheduler


def get_lr_scheduler_ptd(
    optimizer: OptimizerWrapper, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int = -1
) -> SchedulerWrapper:
    return SchedulerWrapper(optimizer.optimizers, scheduler_lambda_fn, last_epoch)


# ==============================
# Adapted from https://github.com/huggingface/diffusers/blob/196aef5a6f76e1ad6ba889184860c3633d166910/src/diffusers/optimization.py
# ==============================


def get_constant_schedule() -> Callable[[int], float]:
    r"""
    Create a schedule with a constant learning rate, using the learning rate set in optimizer.
    """

    def lr_lambda(current_step: int):
        return 1.0

    return lr_lambda


def get_constant_schedule_with_warmup(num_warmup_steps: int) -> Callable[[int], float]:
    r"""
    Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
    increases linearly between 0 and the initial lr set in the optimizer.

    Args:
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
    """

    def lr_lambda(current_step: int):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1.0, num_warmup_steps))
        return 1.0

    return lr_lambda


def get_piecewise_constant_schedule(step_rules: str) -> Callable[[int], float]:
    r"""
    Create a schedule with a constant learning rate, using the learning rate set in optimizer.

    Args:
        step_rules (`string`):
            The rules for the learning rate. ex: rule_steps="1:10,0.1:20,0.01:30,0.005" it means that the learning rate
            if multiple 1 for the first 10 steps, multiple 0.1 for the next 20 steps, multiple 0.01 for the next 30
            steps and multiple 0.005 for the other steps.
    """

    rules_dict = {}
    rule_list = step_rules.split(",")
    for rule_str in rule_list[:-1]:
        value_str, steps_str = rule_str.split(":")
        steps = int(steps_str)
        value = float(value_str)
        rules_dict[steps] = value
    last_lr_multiple = float(rule_list[-1])

    def create_rules_function(rules_dict, last_lr_multiple):
        def rule_func(steps: int) -> float:
            sorted_steps = sorted(rules_dict.keys())
            for i, sorted_step in enumerate(sorted_steps):
                if steps < sorted_step:
                    return rules_dict[sorted_steps[i]]
            return last_lr_multiple

        return rule_func

    rules_func = create_rules_function(rules_dict, last_lr_multiple)
    return rules_func


def get_linear_schedule_with_warmup(num_warmup_steps: int, num_training_steps: int) -> Callable[[int], float]:
    r"""
    Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
    a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.

    Args:
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
    """

    def lr_lambda(current_step: int):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        return max(
            0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
        )

    return lr_lambda


def get_cosine_schedule_with_warmup(
    num_warmup_steps: int,
    num_training_steps: int,
    num_cycles: float = 0.5,
) -> Callable[[int], float]:
    r"""
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
    initial lr set in the optimizer.

    Args:
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        num_periods (`float`, *optional*, defaults to 0.5):
            The number of periods of the cosine function in a schedule (the default is to just decrease from the max
            value to 0 following a half-cosine).
    """

    def lr_lambda(current_step):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
        return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))

    return lr_lambda


def get_cosine_with_hard_restarts_schedule_with_warmup(
    num_warmup_steps: int,
    num_training_steps: int,
    num_cycles: int = 1,
) -> Callable[[int], float]:
    r"""
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
    linearly between 0 and the initial lr set in the optimizer.

    Args:
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        num_cycles (`int`, *optional*, defaults to 1):
            The number of hard restarts to use.
    """

    def lr_lambda(current_step):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
        if progress >= 1.0:
            return 0.0
        return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))

    return lr_lambda


def get_polynomial_decay_schedule_with_warmup(
    num_warmup_steps: int,
    num_training_steps: int,
    lr_init: float,
    lr_end: float = 1e-7,
    power: float = 1.0,
) -> Callable[[int], float]:
    r"""
    Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
    optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
    initial lr set in the optimizer.

    Args:
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        lr_end (`float`, *optional*, defaults to 1e-7):
            The end LR.
        power (`float`, *optional*, defaults to 1.0):
            Power factor.

    Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT implementation at
    https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
    """

    if not (lr_init > lr_end):
        raise ValueError(f"lr_end ({lr_end}) must be smaller than initial lr ({lr_init})")

    def lr_lambda(current_step: int):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        elif current_step > num_training_steps:
            return lr_end / lr_init  # as LambdaLR multiplies by lr_init
        else:
            lr_range = lr_init - lr_end
            decay_steps = num_training_steps - num_warmup_steps
            pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
            decay = lr_range * pct_remaining**power + lr_end
            return decay / lr_init  # as LambdaLR multiplies by lr_init

    return lr_lambda


def _raise_errors_if_packages_not_available(name: str) -> None:
    name_split = name.split("-")
    if len(name_split) < 2:
        return
    package_name = name_split[1]
    if package_name == "bnb":
        if not is_bitsandbytes_available():
            raise ImportError(
                f"Please install bitsandbytes by running `pip install bitsandbytes` to use the {name} optimizer."
            )